
Teaching Constraint Programming while using1

PyCSP3, ACE and Jupyter Notebook2

Christophe Lecoutre #Ñ3

Univ. Artois & CNRS, CRIL, rue Jean Souvraz SP 18, 62307 Lens Cedex, France4

Abstract5

In this paper, we give a brief overview of how Constraint Programming (CP) is taught at the6

University of Artois (at the Masters level). This is a 36-hour module introducing the fundamental7

concepts of CP, based, from a practical point of view, on the PyCSP3 modeling library and the ACE8

constraint solver. We indicate how the course has evolved over time and how interactive tools such9

as Jupyter Notebook are well suited to this type of course.10

2012 ACM Subject Classification Social and professional topics → Model curricula; Theory of11

computation → Constraint and logic programming12

Keywords and phrases Constraint Programming, Teaching, Modeling Library, Constraint Solver13

Digital Object Identifier 10.4230/LIPIcs.WTCP.2023.214

Funding Christophe Lecoutre: This work is supported by the National Research Agency under15

France 2030 bearing the reference ANR-22-EXES-0009 (MAIA Project)16

1 Outline of the Course17

The context of this course about Constraint Programming (CP) [4, 1, 11, 6] is a master’s18

degree in computer science (at the University of Artois), as part of an AI program. Most of19

the students pursue in the business environment rather than at the doctoral level.20

The course is composed of 9 time slots of 4 hours each (one per week), with eight main21

lectures:22

1. Introduction to CP: main phases (modeling and solving), formalism (concept of constraint23

networks), and a few illustrations of (successful) CP applications.24

2. Modeling: modeling languages and formats, with a focus on PyCSP3 [9] and XCSP3 [2],25

and description of generic constraints as well as half a dozen global constraints through26

several illustrative case studies.27

3. Filtering (part 1): introduction of the classical properties (arc and bound consistency)28

that are useful to filter the search space (domains), description of a few (simple) filtering29

algorithms, and presentation of the principle of constraint propagation.30

4. Search (part 1): introduction to backtrack search, look-ahead and look-back schemes, and31

classical search ordering heuristics; quick manipulation of the constraint solver ACE [8].32

5. Optimization: presentation of optimization strategies (notably, the ramp-down technique33

related to Branch and Bound), comparing complete and incomplete approaches, and34

introducing Large Neighborhood Search (LNS).35

6. Filtering (part 2): succinct description of filtering algorithm for table constraints (Simple36

Tabular Reduction [12, 7] and Compact-Table [5]) and presentation of several local37

consistencies (singleton arc consistency, path consistency, soft consistencies).38

7. Search (part 2): presentation of restarting mechanisms, nogood recording, and various39

forms of symmetry-breaking.40

8. Various topics: timetable and energetic forms of reasoning for the constraint Cumulative,41

advanced data structures for modeling and/or solving like automata and decision diagrams.42

© Christophe Lecoutre;
licensed under Creative Commons License CC-BY 4.0

Workshop on Teaching Constraint Programming, WTCP 2023.
Editors: Tejas Santanam and Helmut Simonis; Article No. 2; pp. 2:1–2:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lecoutre@cril.fr
https://www.cril.univ-artois.fr/~lecoutre
https://orcid.org/0000-0002-2205-6545
https://doi.org/10.4230/LIPIcs.WTCP.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Teaching Constraint Programming while using PyCSP3, ACE and Jupyter Notebook

For each of these eight main lectures, a two-hour presentation is actually followed by a43

two-hour exercise session. There is also a complete session (of 4 hours) dedicated to practical44

modeling (with PyCSP3), occurring in the fourth week. Finally, students must submit a45

mini-project such as the Industrial Modeling Challenge presented at CP’15; see Problem 07346

at www.csplib.org.47

2 Course Evolution48

Over time, the course has evolved into a bit more hands-on, especially modeling, as the49

audience has changed and the attraction for research has diminished. The most salient points50

regarding the transformation of the course are:51

paying more attention to modeling, with around one third of the time dedicated to that52

aspect (when including the first session about introducing CP),53

spending more time to dedicated filtering algorithms (propagators) while discarding54

general algorithms like AC3, AC2001, etc. (which are barely used in modern constraint55

solvers),56

using interactive tools as Jupyter Notebook, as explained below.57

A first tool to more easily capture the attention of students is the Python library58

PyCSP3; see pycsp.org. This is because most students (whatever their background) know59

this programming language, and the interface of PyCSP3 has been designed to simplify the60

handling of the modeling process as much as possible. Besides, as two solvers, ACE [8] and61

Choco [10], are embedded in PyCSP3, it is possible to directly execute a model (actually,62

compile the model and run one solver). Interestingly, it becomes easy to write and use63

Jupyter Notebook documents. To facilitate CP learning, we have written more than 6064

Jupyter Notebooks documents:65

one document for each of the 25 popular following constraints (those of of XCSP3-core66

[3]), so as to understand by practice the precise semantics of important constraints:67

Intension, Extension, Regular, MDD68

AllDifferent, AllDifferentMatrix, AllEqual69

Increasing, Decreasing, LexDecreasing, LexIncreasing, Precedence70

Sum, Count, NValues, Cardinality71

Element, ElementMatrix, Channel, Minimum, Maximum72

BinPacking, Cumulative, Knapsack, NoOverlap73

Circuit74

one document for each of the 34 classical following problems, so as to learn, step by step,75

how to model them:76

easy models: AllInterval, BIBD, BoardColoration, CommunityDetection, CryptoPuzzle,77

FlowShopScheduling, GolombRuler, LabeledDice, MagicSequence, Queens, RectanglePacking,78

SubgraphIsomorphism, Sudoku, TrafficLights, Warehouse79

moderately difficult models: BACP, Blackhole, CCMcp, Layout, Mario, Nonogram, Quasig-80

roup, RCPSP, SocialGolfers, SportScheduling, StableMarriage, SteelMillSlab, Vellino81

difficult models: Amaze, Diagnosis, OpenStacks, PizzaVoucher, RackConfiguration, Travel-82

ingTournament83

other documents concern the library interface, the various ways of specifying data and84

piloting the embedded solvers.85

We would like to mention that we are aware that the course does not cover all the fields86

of CP. We also want to mention that an abbreviated version of the course (7 hours) has been87

offered (since two years) to engineers in the car industry (as part of a continuing education88

diploma) and that the return to the tools used in the course has been very positive.89

https://www.csplib.org/Problems/prob073/
https://pycsp.org/


C. Lecoutre 2:3

3 Some Practical Details90

In the second year of the computer science master’s degree at the university of Artois, there91

is a unit dedicated to “Inference and Constraint Algorithms”. This unit is composed of two92

parts: a CP course, as described above, and a course dedicated to SAT (Boolean satisfiability)93

and its extensions. These courses have been carried out for about ten years (once a year),94

but the revisited version for CP (as described in this paper) only for 2 years. For students95

enrolled in the AI component of the master, the unit is mandatory. Usually, this concerns96

around 20 students.97

The documentation (notably, slides) is made available chapter after chapter (week after98

week). In the first part of each main lecture, some relaxed moments are made possible by99

writing (pieces of) models or executing algorithms/solvers live. Students are encouraged to100

simultaneously write PyCSP3 models/code by using Google Colab (which avoids installing101

any kind of software). In the second part of each main lecture, some supervised exercises are102

given (while students being solicited to finish some exercices at home). An exam is organized103

at the end of the module, and its evaluation is combined with that of the mini-projet. The104

topic of the mini-project may change some years.105

In general, the concepts are well understood by the students. But as far as modeling106

is concerned, intensive practice remains a must. From our experience, this is analogous107

to mastering polymorphism in OOP: students understand the principle but have difficulty108

putting it into practice at the start. Finally, the problems chosen to illustrate the course are109

varied: this includes problems of a playful nature (puzzles) as well as problems of a more110

industrial nature.111

References112

1 K.R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.113

2 F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3: an integrated format114

for benchmarking combinatorial constrained problems. CoRR, abs/1611.03398, 2016. URL:115

http://arxiv.org/abs/1611.03398.116

3 F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3-core: A format for117

representing constraint satisfaction/optimization problems. CoRR, abs/2009.00514, 2020.118

URL: https://arxiv.org/abs/2009.00514, arXiv:2009.00514.119

4 R. Dechter. Constraint processing. Morgan Kaufmann, 2003.120

5 J. Demeulenaere, R. Hartert, C. Lecoutre, G. Perez, L. Perron, J.-C. Régin, and P. Schaus.121

Compact-Table: efficiently filtering table constraints with reversible sparse bit-sets. In122

Proceedings of CP’16, pages 207–223, 2016.123

6 C. Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley, 2009.124

7 C. Lecoutre. STR2: Optimized simple tabular reduction for table constraints. Constraints,125

16(4):341–371, 2011.126

8 C. Lecoutre. ACE, a generic constraint solver. CoRR, abs/2302.05405, 2023. arXiv:2302.127

05405, doi:10.48550/arXiv.2302.05405.128

9 C. Lecoutre and N. Szczepanski. PyCSP3: modeling combinatorial constrained problems in129

Python. CoRR, abs/2009.00326, 2020. URL: https://arxiv.org/abs/2009.00326, arXiv:130

2009.00326.131

10 C. Prud’homme and J.-G. Fages. Choco-solver: A java library for constraint programming.132

Journal of Open Source Software, 7(78):4708, 2022. doi:10.21105/joss.04708.133

11 F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier,134

2006.135

12 Julian R. Ullmann. Partition search for non-binary constraint satisfaction. Information Science,136

177:3639–3678, 2007.137

WTCP 2023

http://arxiv.org/abs/1611.03398
https://arxiv.org/abs/2009.00514
http://arxiv.org/abs/2009.00514
http://arxiv.org/abs/2302.05405
http://arxiv.org/abs/2302.05405
http://arxiv.org/abs/2302.05405
https://doi.org/10.48550/arXiv.2302.05405
https://arxiv.org/abs/2009.00326
http://arxiv.org/abs/2009.00326
http://arxiv.org/abs/2009.00326
http://arxiv.org/abs/2009.00326
https://doi.org/10.21105/joss.04708

	1 Outline of the Course
	2 Course Evolution
	3 Some Practical Details

