
A review of the Constraint Programming MOOC1

on EdX2

Augustin Delecluse #3

TRAIL, ICTEAM, UCLouvain, Belgium4

Guillaume Derval #5

ULiège, Belgium6

Laurent Michel #7

UCONN, USA8

Pierre Schaus #9

ICTEAM, UCLouvain, Belgium10

Pascal Van Hentenryck #11

Georgia Tech, USA12

Abstract13

This paper delivers a review of our "Constraint Programming" Massive Open Online Course (MOOC)14

introduced on edX in January 2023. The course leverages the pedagogical solver MiniCP to provide15

an engaging educational approach by necessitating the students to implement key functionalities16

such as search components, global constraints and models. This course is the result of several earlier17

university courses, all of which utilized MiniCP, providing a rich heritage of practical learning and18

automated grading system. This review is structured to first explore relevant predecessor courses and19

works, followed by a detailed exploration of the MOOC’s learning outcomes and structure. Further,20

it presents a brief overview of the framework enabling student coding and evaluation. Concluding21

sections offer a comprehensive statistical analysis of the MOOC’s performance, considerations for22

future advancements, and insightful reflections from this educational endeavor.23
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1 Introduction30

We present a comprehensive review of the "Constraint Programming" Massive Open Online31

Course (MOOC) on edX started in January 2023. This MOOC is structurally centered32

around MiniCP [16], a pedagogically-oriented, minimalist solver, facilitating an immersive,33

end-to-end educational approach.34

The course content is not merely a compendium of varied topics, but it also underscores the35

necessity for students to apply, and even program, the concepts they acquire. In this aspect,36

MiniCP serves as a vital educational tool. It strikes a fine balance between functionality and37

an intentionally incomplete design, necessitating students to complete its implementation,38

thereby making it more robust and efficient.39

At the onset of the academic year, MiniCP only includes a few constraints, a functional40

recursive search algorithm, and the requisite infrastructure to operate as a trail-based or41

copy-based solver. Throughout the course’s ten-week duration, students progressively enhance42

MiniCP’s capabilities:43
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they engage in programming propagators of most well known constraints;44

they have the opportunity to apply these concepts through various modeling exercises,45

including notable case studies;46

they implement custom search and branching methods.47

This hands-on approach, supported by MiniCP, not only builds their understanding of48

the theoretical aspects but also equips them with practical problem-solving skills, effectively49

bridging the gap between theory and application.50

The inception of the MOOC can be traced back to courses offered at different universities,51

all of which utilized MiniCP as their foundational element:52

Discrete Optimization by Laurent Michel at UCONN, USA.53

Constraint Programming by Pascal Van Hentenryck at Georgia Tech, US.54

Combinatorial Optimisation and Constraint Programming (COCP) by Pierre Flenner at55

Uppsala University, Sweden.56

Constraint Programming by Pierre Schaus at UCLouvain, Belgium.57

The last course, in particular, was a trailblazer in the adoption of an automated grading58

system (INGInious [6]). This innovation significantly contributed to the scalability of the59

grading process for the MOOC, thereby playing a pivotal role in shaping the MOOC’s60

structure. Currently, the course at UCLouvain is entirely composed of the MOOC.61

The ensuing sections of this paper are organized as follows. Following a brief exploration of62

relevant courses and associated works, we delve into the learning outcomes and the structural63

layout of the course. Subsequently, we offer a concise description of the framework utilized64

to facilitate student coding and assess their results.65

In the latter segments, we present a statistical analysis reflecting the MOOC’s performance66

and engage in a discourse about future prospects. The manuscript concludes with reflections67

on the invaluable insights gained throughout this enlightening journey.68

1.1 Related Works69

MOOC’s focused on Constraint Programming (CP) include [29, 30, 22]. These primarily70

delve into the modelling aspect of constraint programming, often utilizing Minizinc [18] as a71

tool. More specifically, they give problem statements and either present to the students how72

to model it in CP, or challenge the students to derive a model for it.73

Although modelling is crucial to fully comprehend the wide-ranging potential of combin-74

atorial optimization, these courses tend not to delve deep into the specifics of implementation.75

Additionally, they don’t consistently provide an expansive overview of all components present76

in a CP solver.77

It’s worth highlighting another notable online course, [26]. This course provides a more78

in-depth understanding of CP through its application with ECLiPSe [34], but it solely79

comprises videos and slides, lacking theoretical queries or programming tasks. In contrast,80

our MOOC explores even more CP specifics, engaging students with multiple-choice questions81

and programming exercises. It is also adapted on edX, a platform tailored for MOOC’s.82

2 Learning Outcomes83

A course’s learning outcomes serve as this critical roadmap. These outcomes outline what84

knowledge and skills students should possess by the end of the course. They guide the design85

of the course content, the selection of suitable teaching strategies, and the development of86

assessments to measure student learning. Our MOOC on constraint programming is no87
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exception. We have developed a set of learning outcomes that not only define what the88

students will learn, but also the skills and competencies they will acquire, providing a clear89

understanding of what successful completion of the course looks like. The following section90

outlines these learning outcomes. Those are split into the solver and modeling skills.91

Solvers92

Gain familiarity with the architecture of a constraint programming solver.93

Understand advanced mechanisms within constraint programming, such as state restora-94

tion, domain implementation, and fix-point processes.95

Develop the ability to implement global constraints and propagators.96

Understand most popular black-box search techniques, specifically in the context of97

variable and value selection in constraint programming.98

Learn to implement a depth-first backtracking search within a solver and generic search99

combinators such as discrepancy search.100

Modeling and Theory101

Engage with a wide range of combinatorial optimization problems, focusing specifically102

on vehicle routing and scheduling problems.103

Develop skills to test, extend, and improve existing code within constraint programming104

models.105

Understand the balance between pruning strength and time complexity, and the trade-offs106

that this entails. This also includes becoming familiar with the notion of consistency107

(domain, bound, etc).108

Gain the ability to manipulate and employ the most frequently used constraints within the109

field, including but not limited to sum, element, alldifferent, disjunctive, and cumulative110

constraints.111

Understand the mechanics and application of reified constraints within constraint pro-112

gramming.113

Learn to implement a problem specific search, variable and value heuristics.114

Prerequisites to tackle the course include one datastructures and algorithms courses, as115

well as basic knowledge about Object-Oriented Programming. The target audience is mostly116

composed of master’s students.117

In addition to acquiring specific knowledge about constraint programming solvers and118

modeling skills, this course also aims to instill certain foundational competencies essential to119

the broader field of computer science. By following the MOOC, the student also develop120

skills to test, extend, and improve existing code. Understanding the performance of an121

algorithm is critical in computer science. Students will learn how to benchmark algorithms,122

which involves assessing and comparing the performance of different algorithms.123

By the end of the course, students can tackle a combinatorial optimization problem using124

Constraint Programming, most notably by relying on MiniCP. Some knowledge gained during125

the course, such as modeling tips and tricks, can also be useful when using other tools, such126

as MiniZinc [18].127

3 Table of Content128

The course content is outlined in Table 1. The lectures are delivered through a series of129

approximately 4 videos of 15-minutes for each module, featuring a variety of speakers. The130

WTCP 2023
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content of each module is the same as the one used at the Constraint Programming course131

at UCLouvain, focusing first on the key components from CP before diving into the most132

popular constraint from the paradigm. To gauge the students’ understanding of the material,133

multiple-choice questions (MCQs) related to the lecture content are included. Additionally,134

programming assignments serve both as a practical application and an integral component135

of the students’ final grade in the MOOC. They challenge students to implement filtering136

algorithms or models for optimization problems.137

Course Module Lecture Exercises
Introduction Applications of constraint programming in

routing and scheduling. Presentation of CP
as a declarative paradigm and implementation
details for a N-Queens model.

Model for a graph coloring problem.

MiniCP Solver
[16]

Key components of a CP solver: domain imple-
mentation for Integer Variables, interfaces for
variables and constraints, fixpoint algorithm,
DFS and state management through trailing.

Additional constructor for Integer Variables, a
domain iterator and the Maximum constraint.

Sum and Element
Constraint

Domain and bound consistency [2], Sum and
Element [32] constraints, reified constraints,
Quadratic Assignment Problem and Stable
Matching Problem.

Several propagators for the Element Constraint
and a Stable Matching implementation.

Table Constraint Usage of the Table constraint, usage of bitsets,
naive Table constraint implementation (STR)
[14] and the Compact-Table constraint [4].

Compact-Table algorithm and use it to model
the Eternity problem [23].

All Different con-
straint

Forward checking for All Different constraint,
Regin’s algorithm [21] for domain consistent
constraint.

All Different with forward checking and Re-
gin’s algorithm, and compare the two on the
N-Queens model.

Successor Models
for Traveling
Salesman and
Vehicle Routing
Problems, Large
Neighborhood
Search

Circuit constraint [19], its usage for the Trav-
eling Salesman Problem (TSP) and Vehicle
Routing Problem (VRP), Large Neighborhood
Search (LNS) [25].

Circuit constraint [19], a custom search for an
existing TSP model, tune parameters for LNS,
transform a TSP model into a VRP model.

Cumulative
scheduling

Time-Tabling filtering [10], LNS in scheduling,
modeling producer-consumer [27] and packing
problems with cumulative [28].

Cumulative decomposition, Time-Tabling fil-
tering, modeling the Resource-Constrained Pro-
ject Scheduling Problem (RCPSP).

Disjunctive
scheduling

JobShop problem, Disjunctive constraint [1],
theta-tree datastructure.

Modeling the JobShop problem, branching over
the precedences for the JobShop [12], Detect-
able Precedence and Not-First/Not-Last filter-
ing [33].

Black-Box Search
[15, 17, 20, 7, 9,
13, 3]

First fail principle, impact, activity, conflict
based and discrepancy search.

Last Conflict, Conflict Ordering and Limited
Discrepancy Search.

Modeling Bin-Packing, Symmetry breaking, Steel Mill
Slab Problem [8, 31, 24].

Or with Watched Literals [11] and IsOr con-
straint, modeling the Steel Mill Slab Problem
and apply symmetry breaking on it.

Table 1 Course Modules, Lectures, and Exercises
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4 Programming Exercises and grading138

The material covered in the course, presented in section 3 is fairly dense, especially for the139

programming exercises part. Automation has been a critical component in streamlining140

the exercises for both students and instructors. The establishment of a student project,141

essentially a MiniCP [16] solver template with some elements left to be implemented, is142

performed automatically through a grading platform - Inginious [6]. This step creates a143

git fork of the template, belonging to the teaching team, to which the student is added144

as collaborator. The template offers students a semi-completed CP solver, with sections145

primarily related to constraints and models left to be filled during the programming exercises.146

To ensure students can focus more on the task at hand rather than minor technicalities,147

they are given a part of a functional implementation along with operational examples. For148

instance, the first module introduces an N-Queen model as an example, serving as a guide149

for students in writing their Graph Coloring model. Moreover, each programming exercise150

proposes to fill gaps within missing implementation rather than create a new file from scratch.151

Students still have the possibility to create new separated files if they wish, but this format152

enables them to concentrate on essential aspects and draw from high-quality examples for153

inspiration.154

As an example, to implement the AllDifferent constraint [21], the students are given155

explanations about the filtering, consisting of 4 steps, during the lecture. When presented,156

each step includes an example the state of the datastructures used within the constraint157

and the domain of the variables during the step. The same running examples are also given158

as unit tests, letting the students easily compare their implementation with the behavior159

presented in the videos. 2 out of the 4 steps are already implemented, the students thus160

need to implement the missing half and connect the 4 steps within their filtering algorithm.161

Particular algorithms needed for the filtering presented in the course, such as the computation162

of a bipartite matching for this constraint, are mostly assumed to be known and are given to163

the students. They can treat those components as black boxes and focus on the particular164

features composing the propagators.165

Once a student completes a programming exercise, the corresponding unit tests can be166

initiated. These tests highlight potential mistakes in the students’ implementation, and167

generate the assignment grades, which students can access locally. To share their grades168

with the instructional team, students can commit and push their work to their individual169

repositories. The grading platform then executes the repository tests in a secure manner to170

determine the assignment grade. The entire grading process is fully automated, allowing171

students to evaluate the performance of their implementations both on their own machines172

and the grading platform through unit testing. From an instructor’s standpoint, they can173

easily and continuously collect the grades of all students in a CSV format with a simple174

button press.175

Regarding the unit tests crafted by the teaching team, they are split over four main176

categories for each implementation to fill:177

Small tests are designed to cover a minimal number of variables for a given constraint,178

thus enabling students to readily comprehend the test and potentially use it for quick179

debugging.180

Common mistakes tests are largely based on common errors observed in previous years.181

While other tests may identify these errors, these tests present the mistakes in a more182

comprehensible manner for the students.183

WTCP 2023
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Runtime tests are crucial for ensuring that students utilize the proposed specific data184

structures and methods for implementing incremental filtering. These tests involve larger185

variable domains, to ascertain that students don’t iterate over entire domains but rather186

use smarter strategies like residues. If a student fails such a test, an informative message187

is generated, indicating to the student that its code takes more time than expected, and188

guiding to the suggested optimization in the assignment statements.189

Search tests apply the implementations to more complex scenarios. While the preceding190

three categories offer substantial confidence in students’ implementations, they don’t191

cover all possible cases. This category attempts to bridge that gap by creating a model192

incorporating several variables, with only the constraint under test being added to these193

variables. A depth-first search (DFS) is then executed, examining all solutions to this194

artificial model. Each solution is checked for compliance with the constraint. In certain195

instances, the number of nodes explored, inconsistencies detected, or number of solutions196

found over the search space is also assessed.197

It’s worth noting that the provided unit tests might not be enough to catch every potential198

typo written by the students - "Program testing can be used to show the presence of bugs,199

but never to show their absence" [5]. The objective of these tests extends beyond merely200

achieving robust code coverage, which can be readily obtained via the last test category. The201

focus also lies on creating understandable examples. The importance of the final two test202

categories can’t be overstated. When students employ the constraints to solve a problem in a203

practical sense, their model implementation might falter. In such situations, to be as certain204

as possible that the error resides in the model’s composition and not in the implementation205

of the constraints, students must have strong confidence in their propagation algorithms.206

These types of tests reduce the chances of students tracing back to a potential error written207

in a previous module - as such errors are likely to be picked up by the unit tests. Although208

runtime tests might not be present for all programming exercises, search tests consistently209

serve as guides for students.210

With regard to the common mistakes tests, a notable example is associated with the211

Circuit Constraint implementation [19]. The algorithm for this, partially presented in212

Algorithm 1 and given to the students, has expected and incorrect Java translations displayed213

in Listing 1 and Listing 2, respectively. The error in the incorrect solution lies in the214

modification of the references to the reversible integers—Java objects—rather than updating215

the stored values through a setValue() method call. This mistake causes failures when216

the search backtracks and explores the remaining search space because the reversible integers217

are not properly set up.218

When students’ codes failed the unit test designed because they translated the code as219

in Listing 2, they were alerted to the incorrectness of their implementation, but the reason220

for the failure was neither clear nor easily explained by the test. In a traditional classroom221

setting, puzzled students would seek guidance from a teaching assistant who would identify222

the mistake and guide them toward the correct implementation. However, in the context of223

a MOOC, this issue is addressed through an integrated unit test—shown in Listing 3—which224

ensures the object references are unique.225

Such tests are not typically found in other CP solvers but are invaluable in these instruc-226

tional situations. Before incorporating this test into the course, students who meticulously227

translated the proposed pseudocode into their Java implementation would fail the unit tests228

for this constraint annually, without comprehending why. With the integration of this specific229

test, questions concerning this issue have ceased, enabling both teaching assistants and230

students to concentrate on the course content rather than on language-specific programming231
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nuances.232

Algorithm 1 Circuit propagation - beginning of the algorithm
Data: dest, orig: arrays of reversible integers storing the destination and origin of

partial path through each Integer Variable xi, respectively
Input : Integer Variable xi that has become fixed

1 j ← min(D(xi)) ;
2 dest[orig[i]]← dest[j] ;
3 ...

Listing 1 Expected solution for Algorithm 1
1 private void fix(int i) {
2 int j = x[i].min();
3 int origi = orig[i].value();
4 int destj = dest[j].value();
5 dest[origi].setValue(destj);
6 ...
7 }

Listing 2 Wrong implementation of Al-
gorithm 1

1 private void fix(int i) {
2 int j = x[i].min();
3 int origi = orig[i].value();
4 dest[origi] = dest[j];
5 ...
6 }

233

Listing 3 An explainable test covering the error from Listing 2
1 for (int i = 0; i < x.length; i++) {
2 for (int j = i+1; j < x.length; j++) {
3 assertNotSame(circuit.dest[i], circuit.dest[j], "Use dest[i].

setValue(...) to update reversible objects, not dest[i] = ...");
4 }
5 }

234

Finally, when the exercises statements and the error messages from the unit tests are not235

enough to debug the students’ code, the students can resort to a discussion forum. Each236

question on it can be seen and answered to by both the teaching team and other students.237

The scores obtained from the unit tests contribute to the final grade for the course.238

Each of the 10 modules contributes 2 points to the final grade, which is scored out of 20.239

Within each module, MCQs award 0.5 points, while the remaining 1.5 points come from the240

programming exercises. Students are permitted an unlimited number of submissions for the241

programming tasks. However, to discourage brute-forcing the answers, submissions for the242

MCQs are limited to two per hour.243

5 Analytics244

Out of the 515 students who enrolled in the course, only 110 attempted the exercises, with 70245

of them successfully passing the course by achieving the minimum passing grade of 12/20 on246

their assignments. One way to gauge student engagement with the exercises is by analyzing247

the number of commits they made during the course. On average, the 110 students each248

made about 14.2 commits (median 12, standard deviation 11.5), as depicted in Figure 1.249

However, since the amount of work each commit represents is indefinite, we can also consider250

the total number of lines modified in MiniCP as another metric. This is defined as the sum251

of all lines altered in each commit, which is not synonymous with the net change on MiniCP.252

When we exclude four outliers who modified more than 3000 lines, we find that an average253

WTCP 2023
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student changed about 799 lines (median 670; standard deviation 620). This distribution is254

illustrated in Figure 2 which, similar to the previous figure, displays a typical bell curve with255

an additional peak around zero.256
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Figure 1 Distribution of the number of commits made by each student during the whole course.
Each bin has a width of size 2 (0-1, 1-2, 3-4, ... are grouped together for readability).

0 500 1000 1500 2000 2500 3000
Number of modified lines

0

2

4

6

8

10

12

14

16

N
um

be
r o

f s
tu

de
nt

s

Distribution of the number of modified lines per students

Figure 2 Distribution of the number of lines modified by each student during the whole course.
Each bin has a width of size 250.

We can also analyze the activity of the students per week. Figure 3 shows the number of257

active student (students that made at least a commit that week) each week. The number of258
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students attempting exercices is around 30 each week (a bit more than a fourth of the total259

number of students who attempted the exercices), with a notable peak in week 8 and in the260

last weeks of the course. This can also be seen if we look at the number of commits per day261

and per students, in Figure 4. Week 8 corresponds to the beginning of the Easter holidays in262

Belgium (where a large number of students were following the course).263
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Figure 3 Number of active students per week. Active students are those who made at least one
commit during a given week.
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Apart from this, there are no visible patterns. Figure 5 shows the number of "active264

weeks" (weeks where the students made at least one commit) per students. We see that most265

students engage multiple times with the exercises, but sometimes in pretty wide interval266

between two commits (the median "active weeks" being 4).267
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Figure 5 Number of "active weeks" per students. An active week is a week where the student
made at least a commit.

It’s crucial to mention that while the graphs in this section provide valuable insights into268

students’ commit activities on their repositories, they don’t capture all interactions between269

students and their code. As detailed in section 4, students have the option to evaluate their270

work locally. Consequently, some students might finish each programming assignment on271

their personal computers and only make a single commit at the end of the course. This could272

account for the presence of certain outliers: students with notably few commits yet a large273

number of modified lines of code.274

Finally, here are some handpicked individual feedback gathered from a survey given at275

the end of the course:276

"Although the programming assignments are extremely difficult, at least for me, a non-CS277

major guy, they are absolutely rewarding."278

"I didn’t finish the assignments yet but I will finish them soon. However, I really liked279

what I did for the moment. I can see that I learned a lot. "280

"Many times lots of edge cases were not well explain e.g. Conflict Ordering Search did281

not explain the fundamental difference between Last Conflict Search. Many small details282

like this made the exercises unnecessarily hard. Exercises where there were many tests to283

do exercises step by step greatly helped understanding and made it more worthwhile. "284

"I really like the format of the course, watching videos and then doing exercises but I285

have the impression that sometimes information given for exercises are not enough "286

"It is very clear and easy to understand and it really trains perfectly our skills in287

programming in CP."288

"Some test (especially in module 6 ) are not enough sometimes I still struggled completing289

some parts of exercises because the previous part was not correct although I passed all290

tests."291

From the feedback, it’s clear that students find the exercises engaging and feel gratified292

upon passing all the tests. However, there seem to be instances where the instructions do293
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not fully encompass what is required to complete the assignments. While unit tests partially294

address this issue, providing comprehensive information and tips for the programming295

assignments is something we intend to improve in the course’s next iteration. Interestingly,296

one student’s feedback revealed that they had managed to pass an earlier assignment (the297

Maximum constraint, in this case) with an erroneous implementation, which was only detected298

in subsequent modules via more unit tests. This suggests the need for more robust search299

tests on exercises students have passed to identify such errors more promptly. Additionally,300

thanks to the git system implemented in the course, we can access the student’s flawed301

implementation and use it to derive new tests for common mistakes, a feature that future302

students stand to benefit from.303

6 The future of the MOOC304

As mentioned in the previous section, based on the feedback from the student, we can put305

even more effort on the programming assignments. The students find them rewarding but306

more exhaustive instructions as well as more robust unit tests will help them tackle the307

programming parts more easily.308

It’s also important to acknowledge that our MOOC has a specific limitation. It does309

not focus on developing the students’ ability to translate a problem’s literary description310

into a viable model. This means that we do not extensively cultivate problem-solving from311

scratch in this course, and instead, we provide significant guidance to our students. This312

type of independence is a skill that’s thoroughly developed in [30] where the primary focus313

is on testing the output, i.e., the solution, rather than guiding through every step of the314

problem-solving process. We aim to improve this aspect in future iterations of our MOOC.315

It’s worth noting that our evaluation framework can be adapted to such cases. For example,316

given one instance to a problem, the students need to add the constraints composing the317

problem and find one solution. This solution can be represented as a Java class, for which318

a checker can be added, ensuring the correctness of the solution. This behavior is actually319

exploited in several assignments, such as for the Eternity problem, for which the solutions320

are tested. Compared to the Eternity problem, the model itself would not be imposed, only321

the format of the solution.322

Additionally, very few visualization tool are currently given to the students. For assessing323

the quality of their solution on the presented problems, they are given code printing their324

solutions in a human readable format. A deeper understanding of the course could be325

obtained by improving the solution printed, instead using a visualization tool showing the326

domains of the variables, as well as particular representations of the problems (for instance a327

map showing the path taken for a TSP).328

In future iterations of our course, we intend to invite more experts from our community329

to contribute their insights on advanced topics. We recognize that some of our students have330

an appetite for deeper exploration and are eager for resources that can guide them further.331

By engaging subject matter experts, we can provide those students with the opportunity to332

delve into more complex aspects of constraint programming.333

7 Conclusion334

This study presents our approach to teaching constraint programming via a Massive Open335

Online Course. The course is ambitious, guiding students through the core components of a336

constraint programming solver, constraint implementations, and modeling aspects, all while337
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utilizing the MiniCP solver. A crucial element that enables tackling this comprehensive338

curriculum is automation; all participation in and grading of programming exercises are339

completely automated. By leveraging previous experiences from traditional university courses,340

the MOOC provides an enriched learning environment, complete with challenging program-341

ming assignments. Future versions of this course will aim to increase student engagement342

with the material and introduce more practical examples of constraint programming. Given343

the vast data generated by MOOCs, our teaching team has the unique advantage of being344

able to easily identify and address the areas students find most challenging.345
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