
SAT-IT: the Interactive SAT Tracer (extended
abstract)
Marc Cané
Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Spain

Jordi Coll #

Institut d’Investigació en Intel·ligència Artificial, CSIC, Bellaterra, Spain

Marc Rojo
Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Spain

Mateu Villaret #

Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Spain

Abstract
In this paper we present the Interactive SAT Tracer (SAT-IT), a tool to assist teaching and research
in SAT solving. This is an extended abstract of [3].

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases SAT, CDCL, teaching tool

Digital Object Identifier 10.4230/LIPIcs.WTCP.2023.5

Supplementary Material Software and Documentation: https://imae.udg.edu/Recerca/LAI/

Funding Jordi Coll: Grants PID2019-111544GB-C21 , TED2021-129319B-I00 and PID2022-139835NB-
C21, funded by MCIN/AEI /10.13039/501100011033.
Mateu Villaret: Grant PID2021-122274OB-I00 funded by MCIN/AEI/10.13039/501100011033 and
by ERDF A way of making Europe

The Interactive SAT Tracer

The Boolean Satisfiability problem (SAT) is the paradigmatic NP-complete problem [4, 8].
This is the problem of deciding whether a Boolean propositional formula can be satisfied. This
problem is not only relevant for being the first problem that was shown to be NP-complete,
but his popularity and research interest have been continuously increasing during the last
decades for its applicability as a problem-solving paradigm. The key factors in the success of
SAT are the facility to translate a plethora of hard constraint satisfaction and optimisation
problems to SAT formulas, and the development of extremely efficient algorithms for solving
such formulas. Despite the enormous theoretical computational complexity of SAT, nowadays
we have efficient methods capable of solving huge formulas coming from problems of industrial
interest such as circuit verification [6], planning [7], scheduling or timetabling [5, 2], to name
a few.

Except for very specific domains, there is one clearly predominating algorithm to solve
SAT: the Conflict-Driven Clause Learning algorithm (CDCL). The essence of CDCL is a
combination of search and inference. It consists of a (non-chronological) backtracking scheme
that explores a search tree to find a solution if any exists, enhanced with the Unit Propagation
(UP) rule and which uses the Resolution rule to learn new clauses from dead ends of the
search tree. Therefore, understanding the basics of SAT-solving requires to get familiar with
the previously mentioned inference rules and their integration into a SAT solving algorithm.
In this regard, in [9] there was presented a very compact and precise rule-based framework
to describe SAT solving algorithms.

© Marc Cané and Jordi Coll and Marc Rojo and Mateu Villaret;
licensed under Creative Commons License CC-BY 4.0

Workshop on Teaching Constraint Programming, WTCP 2023.
Editors: Tejas Santanam and Helmut Simonis; Article No. 5; pp. 5:1–5:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jcoll@iiia.csic.es
mailto:mateu.villaret@udg.edu
https://doi.org/10.4230/LIPIcs.WTCP.2023.5
https://imae.udg.edu/Recerca/LAI/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 SAT-IT: the Interactive SAT Tracer (extended abstract)

Figure 1 Main view of SAT-IT, with a completed execution of the CDCL algorithm, and the
pop-up window showing the conflict analysis for the second backjump.

Inspired by the previously mentioned framework, in this work we present the Interactive
SAT Tracer (SAT-IT), a visual and interactive tool to monitor and illustrate the basic
algorithms for SAT solving. In order to facilitate the learning of SAT solving techniques
to users that start without a background knowledge, we consider three algorithms with
progressively increasing sophistication: simple backtracking, its extension with UP, so called
Davis–Putnam–Logemann–Loveland (DPLL), and its further extension with conflict-driven
clause learning, i.e. CDCL. In contrast to the teaching tool LearnSAT [1] our tool provides
an interactive environment with some graphical support. The motivation of our tool is to
provide an environment where the user can see the full trace of a SAT solving process in
a compact but detailed way and understand the reasons why every variable assignment,
backtrack or backjump occurs. Further information is included in the tool, such as the
sequence of resolution rules involved in each conflict analysis, what clauses have been learnt,
or what are the inspected literals involved in the 2-watched literals scheme for implementing
UP. Moreover, the user is able to control the solving process evolution at the desired pace
and choose what variables should be used for branchings (or decisions). The system displays
a full log of the SAT solving process that allows to see which has been the total progress of
the execution until the current point, and users can go back to any previous point of the
solving process to reinspect or to try “what if” scenarios. In particular, one could see which
variables are unit-propagated after some particular assignments. This could serve the user
to get some practical insights of some properties of the encodings such as correctness or
generalized arc consistency enforcement by UP.

SAT-IT is publicly available1. This tool allows the user to work with CNFs in DIMACS
format using any of the three considered algorithms. We find an example execution of CDCL
in Figure 1 considering the following clauses and where decisions are done choosing the first
unassigned variable in the order 1, 2, . . . , 5, and always the positive literal:

C0 : x3 ∨ x4 ∨ ¬x1 ∨ x5 C2 : x3 ∨ ¬x4 ∨ ¬x1 C4 : x1 ∨ ¬x2 C6 : ¬x3 ∨ ¬x4 ∨ x5
C1 : ¬x3 ∨ x4 ∨ x5 C3 : x1 ∨ x2 C5 : ¬x1 ∨ ¬x5

We plan to improve SAT-IT by including more features of CDCL SAT solvers such
as restarts, learnt clause removal and bounded variable elimination, by providing graphic
representation of unsatisfiability proofs, and by supporting MaxSAT solving algorithms.

1 https://imae.udg.edu/Recerca/LAI/

https://imae.udg.edu/Recerca/LAI/


Cané, Coll, Rojo and Villaret 5:3

References
1 Mordechai Moti Ben-Ari. Learnsat: a sat solver for education. In International Conference on

Theory and Applications of Satisfiability Testing, pages 403–407. Springer, 2013.
2 Miquel Bofill, Jordi Coll, Marc Garcia, Jesús Giráldez-Cru, Gilles Pesant, Josep Suy, and

Mateu Villaret. Constraint solving approaches to the business-to-business meeting scheduling
problem. J. Artif. Intell. Res., 74:263–301, 2022. doi:10.1613/jair.1.12670.

3 Marc Cané, Jordi Coll, Marc Rojo, and Mateu Villaret. SAT-IT: the Interactive SAT Tracer.
In Proceedings of the 25th International Conference of the Catalan Association for Artificial
Intelligence, CCIA 2023, Frontiers in Artificial Intelligence and Applications. IOS Press, 2023
(in press).

4 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, 1971.

5 Emir Demirovic, Nysret Musliu, and Felix Winter. Modeling and solving staff schedul-
ing with partial weighted maxsat. Ann. Oper. Res., 275(1):79–99, 2019. doi:10.1007/
s10479-017-2693-y.

6 Daniela Kaufmann, Armin Biere, and Manuel Kauers. Verifying large multipliers by combining
sat and computer algebra. In 2019 Formal Methods in Computer Aided Design (FMCAD),
pages 28–36, 2019. doi:10.23919/FMCAD.2019.8894250.

7 Henry A Kautz, Bart Selman, et al. Planning as satisfiability. In ECAI, volume 92, pages
359–363. Citeseer, 1992.

8 Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi informat-
sii, 9(3):115–116, 1973.

9 Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo
theories: From an abstract davis–putnam–logemann–loveland procedure to dpll(T). Journal
of the ACM, 53(6):937–977, 2006. doi:10.1145/1217856.1217859.

WTCP 2023

https://doi.org/10.1613/jair.1.12670
https://doi.org/10.1007/s10479-017-2693-y
https://doi.org/10.1007/s10479-017-2693-y
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.1145/1217856.1217859

