
OptiLog for Education1

Josep Alòs #2

Logic & Optimization Group (LOG), University of Lleida, Spain3

Carlos Ansótegui #4

Logic & Optimization Group (LOG), University of Lleida, Spain5

Josep M. Salvia #6

Logic & Optimization Group (LOG), University of Lleida, Spain7

Eduard Torres #8

Logic & Optimization Group (LOG), University of Lleida, Spain9

Abstract10

We propose the integration of the OptiLog Python framework into undergraduate courses, mainly on11

courses that make use of SATisfiability-based applications, but also in courses where benchmarking12

and experimentation are relevant. We show a brief overview of the framework’s features, and develop13

examples of cases where OptiLog would be suitable in educational environments. The student will14

find support to model problems, set up execution environments, and process the results in a friendly15

way. All the lessons learnt from the usage of OptiLog can be directly applied to solve industrial16

problems.17

2012 ACM Subject Classification Theory of computation → Constraint and logic programming18

Keywords and phrases Constraint Programming, Satisfiability, Educational tools19

Digital Object Identifier 10.4230/LIPIcs.WTCP.2023.620

1 Introduction21

Combinatorial Optimization (CO) problems arise in many scientific and engineering disciplines22

since they tackle a very general and practical question, i.e., which is the optimal object from23

a finite set of objects. Therefore, it is natural that CO tools are used in many undergraduate24

courses.25

In this paper, we focus on CO tools that use the power of SATisfiability technology. SAT26

technology [10] provides a highly competitive generic problem approach for solving a great27

variety of problems. In particular, the SAT problem is an NP-Complete problem which asks28

to determine whether there is an assignment to the Boolean variables in a propositional29

formula in Conjunctive Normal Form (CNF) (set of clauses) that satisfies the formula.30

In the last twenty years, the efficiency of SAT engines (solvers) has experimented a great31

success. Actually, they have become the core engines of other engines: #SAT (Sharp-SAT),32

MaxSAT (Maximum Satisfiability), QBF (Quantified Boolean Formulas), PBO (Pseudo-33

Boolean Optimization), SMT (Satisfiability Modulo Theories), Model finding, Theorem34

proving, ASP (Answer Set Programming), LCG (Lazy Clause Generation), CSP (Constraint35

Satisfaction Problems), etc.36

Despite the tremendous success of SAT applications in several domains, the access to37

these resources by members of other research communities and students of undergraduate38

courses has been rather limited due to the absence of friendly frameworks. The same story39

applies to other areas of computer science.40

The Python programming language [36], thanks to its simplicity, has dramatically turned41

the situation around, becoming the middleware to interconnect many scientific libraries42

through Python bindings such as Numpy [22], Pandas [37], scikit-learn [33], Pytorch [32],43

© Josep Alòs and Carlos Ansótegui and Josep M. Salvia and Eduard Torres;
licensed under Creative Commons License CC-BY 4.0

Workshop on Teaching Constraint Programming, WTCP 2023.
Editors: Tejas Santanam and Helmut Simonis; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:josep.alos@udl.cat
https://orcid.org/0000-0002-7342-2701
mailto:carlos.ansotegui@udl.cat
https://orcid.org/0000-0001-7727-2766
mailto:josh.salvia@gmail.com
https://orcid.org/ 0000-0003-3387-2094
mailto:eduard.torres@udl.cat
https://orcid.org/0000-0002-3136-7513
https://doi.org/10.4230/LIPIcs.WTCP.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 OptiLog for Education

Keras [11], etc. This interconnection has definitely allowed affording developing more complex44

applications and indirectly justifies further the individual utility of each library.45

In Constraint Programming we also find several Python applications or bindings such46

as CPLEX [23], Gurobi [21], OR-Tools [20], COIN-OR [12], SCIP [19], Z3 [13], cnfgen [25],47

PySAT [24], PyPbLib [28], SAT Heritage [5], OptiLog [2, 1], etc.48

In this paper, we present how the OptiLog Python framework can be used to introduce49

students in the CO field using a high-level programming language (i.e. Python), reducing the50

cognitive overhead that derives from the heterogeneous environment that is the SAT-related51

tools (solvers, encoders, modellers, etc.).52

A typical issue when dealing with any CO tool is to effectively conduct comprehensive53

experimentation. This inherently adds overhead to any project including small projects54

coming from course assignments. In this sense, OptiLog provides the Experiment module55

that automatically manages several low-level details involved in any project. Launching56

experiments, parsing logs, and producing reports should not become a bottleneck issue in57

the project.58

In summary, we can conclude that OptiLog, becomes a very accessible and friendly tool59

to support students on projects making use of SATisfiability technology while keeping all the60

power to develop industrial applications. The student is not playing anymore with a toy tool61

but with a powerful hammer to smash CO problems, yet light enough to be handled in an62

undergraduate course.63

The paper is structured as follows: in Section 3 we present the general architecture of the64

OptiLog framework. In section 4, we present a guiding example on how to use the Modelling65

module. In particular, Sections 5 and Sections 6 show how the Sudoku and the Slitherlink66

problems, respectively, can be defined and solved using OptiLog. We also show in Section 767

the application of automatic configurators. Then we present the Experiment module and how68

experiments are conducted within OptiLog (Section 8), as well as how to process its results69

to produce meaningful data (Section 8.1). Finally, we end with Section 9 with some closing70

thoughts on the impact on the application of OptiLog in real courses, and with Section 1071

providing future work.72

2 Preliminaries73

▶ Definition 1. A literal is a propositional variable x or a negated propositional variable ¬x.74

A clause is a disjunction of literals. A formula in Conjunctive Normal Form (CNF) is a75

conjunction of clauses.76

▶ Definition 2. A truth assignment for an instance ϕ is a mapping that assigns to each77

propositional variable in ϕ either 0 (False) or 1 (True). A truth assignment is partial if the78

mapping is not defined for all the propositional variables in ϕ.79

▶ Definition 3. A truth assignment I satisfies a literal x (¬x) if I maps x to 1 (0); otherwise,80

it is falsified. A truth assignment I satisfies a clause if I satisfies at least one of its literals;81

otherwise, it is violated or falsified. A truth assignment that satisfies all the clauses of a82

CNF formula is a model.83

▶ Definition 4. The SAT problem asks whether there exists a model for a CNF formula. If84

that is the case, the formula is said to be satisfiable, otherwise it is unsatisfiabile.85

▶ Definition 5. An unsatisfiable core is a subset of clauses of a SAT instance that is86

unsatisfiable.87

J. Alòs, C. Ansótegui, J. M. Salvia, E. Torres 6:3

▶ Definition 6. Let A and B be SAT instances. A |= B denotes that A entails B, i.e. all88

assignments satisfying A also satisfy B. It holds that A |= B iff A ∧ ¬B is unsatisfiable.89

▶ Definition 7. A pseudo-Boolean (PB) constraint is a Boolean function of the form90 ∑n
i=1 qili ⋄k, where k and the qi are integer constants, li are literals, and ⋄ ∈ {<, ≤, =, ≥, >}.91

A Cardinality (Card) constraint is a PB constraint where all qi are equal to 1.92

3 OptiLog Framework Architecture93

OptiLog [2, 1] is a Python library for rapid prototyping of SAT-based systems. OptiLog94

provides seven main modules for its end-user API: The Formulas module, the Modelling95

module, the Encoders module, the Solvers module, the Tuning module, the Running module,96

and the BlackBox module. Figure 1 shows the architecture of OptiLog, more information on97

the current architecture be found in the OptiLog manual [27].98

In this paper, we focus on the usage of those modules in education, in particular, the99

Modelling module to define higher-level modelling features and the Experiment module that100

simplifies the execution of experiments and their analysis.101

In the following sections, we will briefly describe each of OptiLog’s main modules.102

Figure 1 OptiLog’s architecture.

3.1 Formulas Module103

The Formula module allows the load and manipulation of several types of boolean formulas.104

In particular, it supports CNF for the typical Conjunctive Normal Form and WCNF formulas105

for the Weighed CNF version (see Definition 1).106

3.2 Modelling module107

The Modelling module allows for representing problems with non-CNF Boolean and Pseudo-108

Boolean expressions that can be automatically transformed into the SAT formula provided109

by the Formulas module. The non-CNF expressions are translated into SAT using the Tseitin110

transformation[35], while the Pseudo-Boolean relies on the Encoders module.111

Additionally, this module allows the representation of the truth table of a formula (see112

Section 4) and the evaluation of each expression given a (partial) assignment, features that113

are interesting when teaching propositional logic concepts.114

WTCP 2023

6:4 OptiLog for Education

3.3 Encoders Module115

Modelling problems into SAT usually involves the codification of Pseudo-Boolean (PB)116

constraints (see Definition 7). OptiLog provides access to several PB encoders that can117

efficiently translate these kinds of constraints into a CNF formula.118

3.4 Solvers Module119

OptiLog integrates several state-of-the-art SAT solvers that can be directly used in Python:120

Cadical [9], Glucose 4.1 and Glucose 3.0 [6], Picosat [7], Minisat [17] and Lingeling 18 [8].121

Additionally, OptiLog uses the iSAT C++ interface, which extends the basic SAT solving122

interface (add clauses, solve a formula, retrieve its model/unsatisfiable core) with other useful123

methods, such as setting and getting solver’s parameters, setting and unsetting decision124

variables or obtaining learnt clauses from the solver.125

3.4.0.1 The iSAT C++ Interface126

allows to use any C/C++ SAT solver to the library by implementing the iSAT C++127

interface (for more details see OptiLog’s official documentation [27]). OptiLog also provides128

a Plug&Play system for solvers that implement such interface, allowing the users to add129

their solvers without recompiling the entire OptiLog library.130

3.5 Tuning Module131

SAT solvers (as well as SAT-based systems) usually expose several configurable parameters132

that can potentially affect the system’s performance, and whose value may not be known a133

priori. Automatic Configuration (AC) tools search for a proper setting of these configurable134

parameters by optimizing some objective function (e.g. run time) on a set of instances. The135

Tuning module abstracts the creation of the files required by different AC tools. This is ideal136

as an introduction to AC tools for students with no prior experience in the field.137

3.6 Running Module138

A common task that is performed to evaluate the performance of a SAT-based system is its139

execution over a set of instances. This can be tedious and error-prone work, especially if we140

have to do it manually. The Running module provides an automatic procedure to submit all141

these tasks to (potentially) any execution environment, as shown in Section 8.142

3.7 BlackBox module143

Some third-party tools are not directly integrable in a Python application (no bindings144

available, only the binary is available. . .). For such tools, OptiLog provides the BlackBox145

module, that allows the execution of arbitrary programs. It also allows to define limits for146

those executions (memory, CPU time. . .). This module avoids unnecessary boilerplate and147

lets users and students focus on critical code.148

4 Defining Problems149

In this section, we present how we can use Non-CNF Boolean formulas augmented with PB150

constraints to encode problems.151

J. Alòs, C. Ansótegui, J. M. Salvia, E. Torres 6:5

1 a = Bool(’a’)
2 b = Bool(’b’)
3 c = Bool(’c’)
4 e1 = ~a + ~b + ~c < 2
5 e2 = ~(a & b & c)
6 e3 = e1 & e2
7 e4 = If(a, b ^ c)
8 p1 = Problem (e1 , name=’p1’)
9 p2 = Problem (e2 , name=’p2’)

10 p3 = Problem (e3 , name=’p3’)
11 p4 = Problem (e4 , name=’p4’)
12 t = TruthTable (p1 , p2 , p3 , p4)
13 t. print ()

Listing 1 Basic example of a problem definition.

1 | a | b | c | p1 | p2 | p3 | p4 |
2 +---+---+---+----+----+----+----+
3 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
4 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
5 (...)

Listing 2 Truth table representation for p1, p2, p3 and p4

As we can see in Listing 1, we first define the Boolean variables that will appear in the152

formula (lines 1-3). These variables have to be labeled with an identifier.153

Then, in line 4 we create our first expression to encode the constraint ¬a + ¬b + ¬c < 2.154

Notice we can directly use the Python operators (∼, &, |,∧, +, −,*, <, <=, >=, >, ==) to155

create a logical expression. Lines 5 and 7 encode the constraints ¬(a ∧ b ∧ c) and a → (b ⊕ c)156

respectively, whereas in line 6 we encode the conjunction of expressions e1 and e2.157

Finally, in lines 8-11 we transform the created expressions to instances of the class Problem.158

A Problem represents the conjunction of a set of expressions. In this case, we add a single159

expression to each Problem, and we name each of the problems to reference them later.160

In line 12 we create the truth table for our four problems and we print them in line 13161

producing the output shown in Listing 2.162

Listing 3 shows how we can use a SAT solver to obtain a solution for our problem. First163

of all, we need to translate our formula into CNF DIMACS format [15] which is the input164

format for SAT solvers (line 14). In line 15, we create an instance of the SAT solver Glucose41.165

Then, in line 16, we add the clauses forming our CNF formula to the SAT solver and execute166

the solver in line 17. If the input instance is satisfiable we can obtain a model and decode167

that model according to the labels of our variables. The resulting model is finally printed in168

line 19 obtaining the output: P3 solution: [a, b, ∼c].169

13 (...)
14 cnf3 = p3. to_cnf_dimacs ()
15 s = Glucose41 ()
16 s. add_clauses (cnf3. clauses)
17 s.solve ()
18 solution = cnf3. decode_dimacs (s.model ())
19 print (’P3 solution :’, solution)

Listing 3 Example on how to solve p3 and extract its model.

Now, we can also query whether problem p4 is a logic consequence of p3 (p3 entails p4),170

WTCP 2023

6:6 OptiLog for Education

19 (...)
20 s = Glucose41 ()
21 cnf5 = Problem (e3 & ~e4). to_cnf_dimacs ()
22 s. add_clauses (cnf5. clauses)
23 print (’Is p5 Satisfiable :’, s.solve ())

Listing 4 Logic consequence example.

i.e., ¬a + ¬b + ¬c < 2, ¬(a ∧ b ∧ c) |= a → (b ⊕ c) which is equivalent to ask whether the171

conjunction of all the premises and the negation of the consequence, i.e., (¬a + ¬b + ¬c <172

2) ∧ ¬(a ∧ b ∧ c) ∧ ¬(a → (b ⊕ c)) is unsatisfiable. The code in Listing 4 shows how to do it173

in OptiLog.174

Since the logic consequence is valid the SAT solver reports the formula is unsatisfiable:175

Is p5 Satisfiable: False.176

5 Modelling and solving the Sudoku problem177

In this section, we present another well-known combinatorial problem: the Sudoku [18]. It178

consists of a grid that must be filled with numbers, according to some constraints. The179

classic version (9x9) divides the grid into (3x3 squared) subregions, and has the following180

constraints:181

All cells must have a number between 1 to 9.182

A number can only appear once in a column.183

A number can only appear once in a row.184

A number can only appear once in a subregion.185

Other versions might specify additional constraints or subregions with a different shape.186

Listing 5 shows how one can encode this constraints using OptiLog. The function187

encode_sudoku generates a CNF object with the constraints for the provided Sudoku. First,188

lines 10-13 encode the values that are known in the Sudoku (i.e. they are fixed). Lines 15-17189

encode the constraint that each cell have assigned one value. Lines 19-22 encode the constraint190

that each value appears in a row, and similarly the constraint that each value appears in a191

column would be implemented in line 25. Finally, the constraint that each value appears192

once in a subregion is encoded in lines 27-30.193

Despite being a simple encoding, composed mostly of At-Most-One constraints, the194

students must reason about which cells must be grouped together for those restrictions195

(implement iter_rows, iter_cols, iter_subregions), and more complex restrictions could196

be added in harder variants of the Sudoku problem.197

To find a solution (if it exists) on the Sudoku, the clauses in the CNF object returned by198

the encoding function can be fed to a SAT solver using OptiLog, as seen in Listing 6. If it199

has a solution, sol (line 11) will be a list containing Bool (Not) objects if the corresponding200

variable was set to true (false).201

6 Modelling and solving the Slitherlink problem202

In this section, we show how to model a concrete problem in OptiLog. We focus on the203

Slitherlink problem, originally invented by Nikoli [30] which was shown to be NP-Compete in204

[38]. In this problem, we are given an n × m grid. A cell in the grid can be empty or contain205

a number between 0 and 3. Each cell has 4 associated edges (its borders). The goal is to206

select a set of edges among all cells such that:207

J. Alòs, C. Ansótegui, J. M. Salvia, E. Torres 6:7

1 from itertools import product
2 from optilog . modelling import *
3
4 def var(j, i, v):
5 return Bool(f’Cell_{j}_{i}_{v}’)
6
7 def encode_sudoku (s):
8 p = Problem ()
9

10 for r, c in product (range (s. n_rows), range (s. n_cols)):
11 v = s.cells[r][c]
12 if v is not None:
13 p. add_constr (var(r, c, v)))
14
15 for r, c in product (range (s. n_rows), range (s. n_cols):
16 vals = [var(r, c, v) for v in range(s. n_vals)]
17 p. add_constr (Add(vals) == 1)
18
19 for cells in s. iter_rows ():
20 for v in range (s. n_vals):
21 vals = [var(r, c, v) for (r, c) in cells]
22 p. add_constr (Add(vals) == 1)
23
24 for cells in s. iter_cols ():
25 (...)
26
27 for cells in s. iter_subregions ():
28 for v in range (s. n_vals):
29 vals = [var(r, c, v) for (r, c) in cells]
30 p. add_constr (Add(vals) == 1)
31
32 return p. to_cnf_dimacs ()

Listing 5 Encoding of the classical Sudoku constraints

1 from optilog . solvers .sat import *
2
3 cnf = encode_sudoku (sudoku)
4
5 s = Glucose41 ()
6 s. add_clauses (cnf. clauses)
7 has_solution = s.solve ()
8 print (’Has solution ?’, has_solution)
9

10 if has_solution :
11 sol = cnf. decode_dimacs (s.model ())
12 visualize (sol , sudoku)

Listing 6 Solving the classical Sudoku

If a cell has a number k, then k of its edges have to be selected.208

The selected edges form exactly one cycle that does not cross itself.209

In Figure 2 we can see an example of the Slitherlink problem and its only correct210

solution. For more implementation details you can check OptiLog’s documentation: http:211

//ulog.udl.cat/static/doc/optilog/html/optilog/use-cases/slitherlink.html212

6.1 Modelling the Slitherlink problem213

First, we present how to encode the problem using OptiLog.214

WTCP 2023

http://ulog.udl.cat/static/doc/optilog/html/optilog/use-cases/slitherlink.html
http://ulog.udl.cat/static/doc/optilog/html/optilog/use-cases/slitherlink.html
http://ulog.udl.cat/static/doc/optilog/html/optilog/use-cases/slitherlink.html

6:8 OptiLog for Education

Figure 2 Problem representation (left) and solution (right)

Listing 7 shows the source code needed to model into SAT an instance of the problem.215

First, we generate an instance of the class Problem (line 2). Then, we encode the constraints216

of the problem. Lines 5-8 encode the vertex constraints that ensure that the path traced217

by the solution is contiguous. Line 7 calls the method vertex_edges, that returns a list of218

Bool objects representing edges that intersect at the vertex i, j. The encoded constraint is219

that a selected edge can be contiguous without crossing iff the number of selected edges that220

intersect at each vertex1 is 0 or 2.221

Lines 11-15 encode the cell constraint for each cell with a number. Line 14 calls the222

method cell_edges, which returns a list of Bool objects representing the edges that surround223

a cell. The added constraint imposes that the sum of incident edges is equal to the number in224

the cell. Then, we encode the problem to CNF DIMACS (line 17) and return the underlying225

CNF object.226

1 def encode_slitherlink (sl):
2 p = Problem ()
3
4 # Vertex Constraints
5 for i in range(sl.m + 1):
6 for j in range(sl.n + 1):
7 edges = sl. vertex_edges (i, j)
8 p. add_constr ((Add(edges) == 0) | (Add(edges) == 2))
9

10 # Cell Constraints
11 for j, row in enumerate (sl.cells):
12 for i, cell in enumerate (row):
13 if cell is None: continue
14 edges = sl. cell_edges (i, j)
15 p. add_constr (Add(edges) == cell)
16
17 return p. to_cnf_dimacs ()

Listing 7 Encoding to SAT for the Slitherlink problem

Notice that this model is not taking into account the fact that there has to be exactly227

one cycle.228

1 Computed by adding (Add object) all the edges that could intersect a vertex.

J. Alòs, C. Ansótegui, J. M. Salvia, E. Torres 6:9

1 def solve_slitherlink (instance , seed):
2 sl = SlitherLink (instance)
3 cnf = encode_slitherlink (sl)
4 s = Cadical ()
5 s.set(’seed ’, seed)
6 s. add_clauses (cnf. clauses)
7 while s.solve () is True:
8 n_cycles = sl. manage_cycles (s, cnf)
9 if n_cycles > 1: continue

10 print(’s YES ’, flush=True)
11 return cnf. decode_dimacs (s.model ())
12 print(’s NO’, flush=True)

Listing 8 Incremental SAT-based approach to solve the Slitherlink problem.

1 def manage_cycles (self , solver , cnf):
2 model = solver .model ()
3 cycles = self. find_cycles (cnf. decode_dimacs (model))
4 if len(cycles) > 1:
5 for cycle in cycles :
6 clause = [~edge for edge in cycle]
7 solver . add_clause (cnf. to_dimacs (clause))
8 return len(cycles)

Listing 9 Auxiliary function to manage cycles

6.2 Solving the Slitherlink problem229

In this section, we describe an incremental SAT-based solving approach (implemented in230

function solve_slitherlink of Listing 8) for the Slitherlink problem. We use the encoding231

described in the previous section to obtain a solution to the CNF formula generated in line 3232

that guarantees that for each cell exactly the amount of edges described by the number233

associated with the cell is selected and they form a contiguous path.234

Lines 4 and 5 instantiate the Cadical SAT solver and initialize it with a seed for the235

random number generator of the solver, and in line 6 we add to the solver the clauses of the236

formula. Then, we iteratively query the SAT solver (line 7) to provide a solution (a model).237

Notice that we can use any of the incremental SAT solvers included in OptiLog instead of238

Cadical, or even add other external incremental SAT solvers through the iSAT interface.239

In line 8, we call function manage_cycles that checks the solution reported by the SAT240

solver (defined in Listing 9). If there is more than one cycle it adds to the SAT solver241

the clauses that forbid these cycles in the solution. To find the cycles it uses the function242

find_cycles. To discard a cycle, it just adds to the SAT solver as a clause the negation of all243

the edges that conform to the cycle.244

If only one cycle was found, then we have found a solution. We return the solution once245

decoded the model provided by the SAT solver (line 11). Otherwise, we will exit the main246

loop (line 7) if there is no solution with just one cycle and we report the problem has no247

solution.248

To test our approach we generated a set of 100 random instances of size 101 × 101 (the249

generator can be found here: http://ulog.udl.cat/static/doc/optilog/html/optilog/250

use-cases/slitherlink.html). When transformed to CNF, these instances have an average251

of 149937 boolean variables, 308721 clauses for the first encoded formula and 395253 for the252

last one. The instances that we solve require an average of 120 iterations.253

As incremental SAT solver we used Cadical in its default configuration with a timeout of254

WTCP 2023

http://ulog.udl.cat/static/doc/optilog/html/optilog/use-cases/slitherlink.html
http://ulog.udl.cat/static/doc/optilog/html/optilog/use-cases/slitherlink.html
http://ulog.udl.cat/static/doc/optilog/html/optilog/use-cases/slitherlink.html

6:10 OptiLog for Education

1 @ac
2 def solve_slitherlink (instance , seed , Solver : CfgCls (Cadical)):
3 sl = SlitherLink (instance)
4 cnf = encode_slitherlink (sl)
5 solver = Solver ()
6 solver .set(’seed ’, seed)
7 solver . add_clauses (cnf. clauses)
8 (...)

Listing 10 Modifications in solve_slitherlink to configure the Cadical SAT solver

1 from optilog . blackbox import ExecutionConstraints , RunSolver
2 from optilog . tuning . configurators import GGAScenario
3 from slitherlink import solve_slitherlink
4
5 if __name__ == " __main__ ":
6 time_limit = 300
7 configurator = GGAScenario (
8 solve_slitherlink ,
9 input_data =" instances / training /*. txt", run_obj =" runtime ",

10 data_kwarg =" instance ", seed_kwarg ="seed",
11 seed =1, cost_min =0, cost_max =10 * time_limit ,
12 tuner_rt_limit =60 * 60 * 4, instances_min =10, instances_gen_max =-10,
13 constraints = ExecutionConstraints (
14 s_real_memory ="6G", s_wall_time =time_limit , enforcer = RunSolver ()
15),
16)
17
18 configurator . generate_scenario ("./ gga_scenario ")

Listing 11 Script to generate the AC scenario for GGA

5 minutes. We were able to find a solution for 51% of instances.255

7 Tuning the Slitherlink problem256

Since we used the default configuration for the Cadical SAT solver in our experiments in257

section 6.2, it would also be of interest to automatically configure (tune) Cadical to find a258

solution for more instances within the same timelimit.259

Cadical has a total of 146 discrete finite domain parameters that would be of interest to260

configure. In order to do so, we will use OptiLog’s Tuning module.261

The first thing we need to do is to update the solve_slitherlink function to receive a262

constructor of an automatically configured SAT solver, as shown in line 2 of Listing 10.263

Then, we can proceed to create an automatic configuration scenario as shown in Listing 11.264

In this example, we will use the GGAConfigurator class to generate the scenario files for265

PyDGGA [3, 4]. The following configuration describes a GGA scenario with a PAR10 runtime266

penalization and a time limit of 4 hours. The configurator will be trained on a new set of267

100 instances generated with different seeds than those used to test our approach. Finally,268

we generate the scenario at the directory gga_scenario.269

We configured Cadical with PyDGGA 1.6.0 on a computer cluster with Intel Xeon Silver270

4110 CPUs at 2.1GHz cores with 4 parallel processes each. When the optimization was271

completed, we extracted the best configuration found by GGA for each solver and reexecuted272

the experiments on our original set of instances. In our analysis of the experimental results,273

thanks to the new configuration found by GGA, we solve 89% of the instances and we274

J. Alòs, C. Ansótegui, J. M. Salvia, E. Torres 6:11

decrease the PAR10 metric by a factor of 4.45. The largest instance that we were able to275

solve had a size of 101 × 101.276

8 Running the Pac-Man project277

Setting up properly the experimentation environment required to evaluate a solving approach278

can result in a time-consuming task also source of bugs conducting to wrong evaluations.279

This increases the frustration of the student since it has to employ energy that otherwise he280

could invest in improving the solving approach.281

OptiLog provides support in this sense, automating as much as possible some parts of282

the process. In this section, we present an example on how OptiLog can be used to evaluate283

the performance of different search algorithms implemented for Pac-Man [14].284

The Pac-Man project provides a foundation where the students can implement different285

search algorithms and heuristics. For simplicity, we will focus on the basic search algorithms286

applied to the mazes (where the objective is to find the single food in the map), but this287

approach could be extended to all the problems presented in the framework. Using OptiLog,288

we can perform a batch execution of all the implementations with all the provided layouts289

(as well as other layouts generated randomly). The basic setup for the experiment is shown290

in Listing 12.291

1 from optilog . running import RunningScenario
2 from optilog . blackbox import ExecutionConstraints , RunSolver
3
4 if __name__ == " __main__ ":
5 solvers = {
6 "bfs": "./ wrappers /bfs.sh", "dfs": "./ wrappers /dfs.sh", ... }
7 runner = RunningScenario (
8 solvers =solvers ,
9 tasks=" layouts / searchLayouts /*. lay",

10 submit_file =" submit .sh", unbuffer =True ,
11 constraints = ExecutionConstraints (
12 s_wall_time =300 , s_real_memory ="1G", enforcer = RunSolver ()),
13)
14 runner . generate_scenario (scenario_dir ="./ scenario ")

Listing 12 Execution scenario for the Pac-Man project

First, we describe the settings of our scenario. We assume a wrapper has been provided292

that runs Pac-Man with the appropiate values to execute each algorithm (bfs.sh, dfs.sh. . .).293

We declare them as solvers (line 8), which will be run against the list of tasks (e.g. the294

layouts we want to solve) (line 9). It is also possible to specify other options such as the295

CPU time limit or the maximum memory available (ExecutionConstraints).296

By default, OptiLog incorporates compatibility for two optional tools, unbuffer [16], to297

automatically flush to the log files and runsolver [34], to constraint the number of resources298

(time and memory) available to the process. In order to use these tools, they have to be299

available in the PATH.300

OptiLog provides a backend-agnostic running environment. This means that the under-301

lying tasks need to be delegated to a Job Scheduler like SGE [29] or Task Spooler [26] to302

get executed. The submit_file parameter points to the script in charge of submitting each303

task. In the example we assume Task Spooler in a local machine.304

Finally, the method generate_scenario() in line 14 generates an scenario directory305

(./scenario) containing all the necessary files to run the experiments.306

WTCP 2023

6:12 OptiLog for Education

Then, the user can interact with this scenario directly from a terminal by launching307

a command of the form optilog-running /path/to/scenario/ ACTION where action can308

be {list,submit,clean}, which will list all the information of the scenario (tasks, solvers309

and seeds); launch the experiments and collect the logs; and clean up the logs of previous310

executions respectively.311

By default, the logs of the experiment are stored inside the scenario folder, separated312

into directories for each solver. For more information about OptiLog’s Running module you313

can check the official documentation: http://ulog.udl.cat/static/doc/optilog/html/314

optilog/running.html.315

8.1 Processing Experimental Results316

To process the results, we can use OptiLog to parse the logs and extract information.317

Listing 13 shows the code used to parse the logs for the Pac-Man experiment, and Listing 14318

shows the output of this parsing.319

First we have to define in a ParsingInfo object which information we want to extract.320

Suppose we are interested in evaluating which algorithm expands more nodes during the321

exploration, as well as assessing which ones can find optimal solutions. In lines 4 and 7 we322

add filters based on regular expressions to the parser to extract this information from the323

output of each execution. The parse_scenario function call (line 10) parses the result of324

the experiments and returns a Pandas dataframe [31] with the parsed data. Based on the325

students experience with Pandas, we can either provide them with sample code to analyze326

the results or let them to explore the dataframe by themselves. Listing 14 shows the result327

of the execution.328

1 from optilog . running import *
2
3 pi = ParsingInfo ()
4 pi. add_filter (name="cost", cast_to =int ,
5 expression =r"Path found with total cost of (\d+)")
6
7 pi. add_filter (name=" expand ", cast_to =int ,
8 expression =r" Search nodes expanded : (\d+)")
9

10 df = parse_scenario ("./ scenario ", pi)
11 df = df.drop (["seed"], axis =1, level =1)
12
13 print ("Cost of the path:")
14 print (df.xs("cost", level =1, axis =1))
15 print (" ============================ ")
16 print (" Expanded nodes:")
17 print (df.xs(" expand ", level =1, axis =1))

Listing 13 Log processing for Pac-Man

9 Feedback from Using OptiLog in Education329

OptiLog is ready to be used by practitioners offering a simple use with lots of functionality330

to support many industrial tasks. With the aim of closing the gap between academic lectures331

and real-world development of SAT-based applications, we introduced OptiLog last year in332

an undergraduate course on Computational Logic (1st year, first semester) and Artificial333

Intelligence (3rd year).334

http://ulog.udl.cat/static/doc/optilog/html/optilog/running.html
http://ulog.udl.cat/static/doc/optilog/html/optilog/running.html
http://ulog.udl.cat/static/doc/optilog/html/optilog/running.html

J. Alòs, C. Ansótegui, J. M. Salvia, E. Torres 6:13

1 Cost of the path:
2 bfs dfs ...
3 tinyMaze .lay 8 10 ...
4 smallMaze .lay 19 49 ...
5 ...
6 ============================
7 Expanded nodes:
8 bfs dfs ...
9 tinyMaze .lay 15 14 ...

10 smallMaze .lay 90 59 ...
11 ...

Listing 14 Output of script in Listing 13

In the Computational Logic subject students have a very basic programming background335

(i.e. loops and functions) at the time the lab exercise is introduced. The assignments are336

evaluated using automatic verification tools, which are also provided to the students to337

validate their implementations.338

For the Artificial Intelligence subject, students already have an advanced programming339

knowledge and they are also provided with automatic validation tools. In contrast to340

Computational Logic students, we do also evaluate the quality of their implementations.341

This initiative has resulted in great success. Students immediately got fully motivated342

since they were able to develop and touch real applications that they never imagined from a343

subject that results quite abstract at first glance. Moreover, they were introduced to good344

practices in setting up a proper experimental environment. This is out of reach in many345

subjects since it requires a non-negligible amount of time unless you have the support of346

tools like OptiLog.347

In contrast, small groups of Computational Logic students found the programming level a348

bit higher compared to other subjects in the degree. This is expected since first-year students349

typically have very different learning curves.350

Instructors can also focus now their energy on providing additional support. For example,351

for the sudoku example, we created, an assignment auto-grader, similar to those available in352

the Pac-Man project [14], that gives concrete feedback on the mistakes of the students and353

allows instructors to evaluate the task’s deliverables easily.354

While OptiLog was born as a solution for developing SAT-based applications, its additional355

transversal modules (blackbox, tuning, running) make of it a good travel companion in many356

subjects and undergraduate courses.357

10 Future Work358

We plan on generating a database of course assignments, auto-graders and algorithm examples359

for educators and students. We also intend to deploy this framework in more advanced360

educational master courses.361

References362

1 Josep Alòs, Carlos Ansótegui, Josep M. Salvia, and Eduard Torres. OptiLog V2: Model,363

Solve, Tune and Run. In Kuldeep S. Meel and Ofer Strichman, editors, SAT 2022, volume364

236 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:16, Dagstuhl,365

Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.366

dagstuhl.de/opus/volltexte/2022/16699, doi:10.4230/LIPIcs.SAT.2022.25.367

WTCP 2023

https://drops.dagstuhl.de/opus/volltexte/2022/16699
https://drops.dagstuhl.de/opus/volltexte/2022/16699
https://drops.dagstuhl.de/opus/volltexte/2022/16699
https://doi.org/10.4230/LIPIcs.SAT.2022.25

6:14 OptiLog for Education

2 Carlos Ansótegui, Jesus Ojeda, António Pacheco, Josep Pon, Josep M. Salvia, and Eduard368

Torres. Optilog: A framework for sat-based systems. In Chu-Min Li and Felip Manyà, editors,369

SAT 2021, volume 12831 of Lecture Notes in Computer Science, pages 1–10. Springer, 2021.370

doi:10.1007/978-3-030-80223-3_1.371

3 Carlos Ansótegui, Josep Pon, and Meinolf Sellmann. Boosting evolutionary algorithm372

configuration. Annals of Mathematics and Artificial Intelligence, 2021. doi:10.1007/373

s10472-020-09726-y.374

4 Carlos Ansótegui, Josep Pon, Meinolf Sellmann, and Kevin Tierney. Pydgga: Distributed gga375

for automatic configuration. In Chu-Min Li and Felip Manyà, editors, Theory and Applica-376

tions of Satisfiability Testing – SAT 2021, pages 11–20, Cham, 2021. Springer International377

Publishing.378

5 Gilles Audemard, Loïc Paulevé, and Laurent Simon. SAT heritage: A community-driven effort379

for archiving, building and running more than thousand SAT solvers. In Luca Pulina and380

Martina Seidl, editors, SAT 2020, volume 12178 of Lecture Notes in Computer Science, pages381

107–113. Springer, 2020.382

6 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers.383

In IJCAI 09, IJCAI’09, page 399–404, San Francisco, CA, USA, 2009. Morgan Kaufmann384

Publishers Inc.385

7 Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation,386

4(2-4):75–97, 2008.387

8 Armin Biere. Lingeling, plingeling and treengeling entering the sat competition 2013. Proceed-388

ings of SAT competition, 2013:1, 2013.389

9 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,390

Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,391

Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of392

SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department393

of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.394

10 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of395

Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,396

2009.397

11 Francois Chollet et al. Keras, 2015. URL: https://github.com/fchollet/keras.398

12 COIN-OR Foundation. Computational infrastructure for operations research. https://www.399

coin-or.org/, 2016.400

13 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International401

conference on Tools and Algorithms for the Construction and Analysis of Systems, pages402

337–340. Springer, 2008.403

14 John DeNero and Dan Klein. Teaching introductory artificial intelligence with pac-man. In404

First AAAI Symposium on Educational Advances in Artificial Intelligence, 2010.405

15 dimacs.rutgers.edu. Dimacs cnf suggested format, 2021. URL: http://www.cs.ubc.ca/~hoos/406

SATLIB/Benchmarks/SAT/satformat.ps.407

16 Don Libes. Unbuffer man page, 2021. URL: https://linux.die.net/man/1/unbuffer.408

17 Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia and Armando409

Tacchella, editors, Theory and Applications of Satisfiability Testing, pages 502–518, Berlin,410

Heidelberg, 2004. Springer Berlin Heidelberg.411

18 Bertram Felgenhauer and Frazer Jarvis. Mathematics of sudoku i. Mathematical Spectrum,412

39(1):15–22, 2006.413

19 Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime414

Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,415

Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,416

Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,417

Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter418

https://doi.org/10.1007/978-3-030-80223-3_1
https://doi.org/10.1007/s10472-020-09726-y
https://doi.org/10.1007/s10472-020-09726-y
https://doi.org/10.1007/s10472-020-09726-y
https://github.com/fchollet/keras
https://www.coin-or.org/
https://www.coin-or.org/
https://www.coin-or.org/
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
https://linux.die.net/man/1/unbuffer

J. Alòs, C. Ansótegui, J. M. Salvia, E. Torres 6:15

Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse419

Institute Berlin, March 2020.420

20 Google. Google OR-Tools. https://developers.google.com/optimization, 2021.421

21 Gurobi Optimization. Gurobi. https://www.gurobi.com/, 2021.422

22 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,423

David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert424

Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,425

Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin426

Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.427

Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020.428

doi:10.1038/s41586-020-2649-2.429

23 IBM. IBM ILOG CPLEX. https://www.ibm.com/products/430

ilog-cplex-optimization-studio, 2021.431

24 Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for432

prototyping with SAT oracles. In SAT, pages 428–437, 2018.433

25 Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals. Cnfgen: A generator of434

crafted benchmarks. In Serge Gaspers and Toby Walsh, editors, SAT 2017, volume 10491 of435

Lecture Notes in Computer Science, pages 464–473. Springer, 2017.436

26 Lluis Batlle i Rossell. Task spooler man page, 2021. URL: http://manpages.ubuntu.com/437

manpages/xenial/man1/tsp.1.html.438

27 Logic and Optimization Group. Optilog official documentation, 2021. URL: http://ulog.439

udl.cat/static/doc/optilog/html/index.html.440

28 Logic Optimization Group. PyPBLib: PBLib Python3 bindings. https://pypi.org/project/441

pypblib/, 2018. Described in OptiLog [2].442

29 W. Gentzsch (Sun Microsystems). Sun grid engine: Towards creating a compute power grid. In443

Proceedings of the 1st International Symposium on Cluster Computing and the Grid, CCGRID444

’01, page 35, USA, 2001. IEEE Computer Society.445

30 Nikoli. Nikoli’s slitherlink webpage, 2021. URL: https://www.nikoli.co.jp/en/puzzles/446

slitherlink.html.447

31 The pandas development team. pandas-dev/pandas: Pandas, February 2020. doi:10.5281/448

zenodo.3509134.449

32 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,450

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,451

Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit452

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-453

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-454

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,455

pages 8024–8035. Curran Associates, Inc., 2019.456

33 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,457

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,458

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine459

Learning Research, 12:2825–2830, 2011.460

34 Olivier Roussel. Controlling a solver execution: the runsolver tool. JSAT, 7:139–144, 11 2011.461

doi:10.3233/SAT190083.462

35 G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–483.463

Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.464

36 Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts465

Valley, CA, 2009.466

37 Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt467

and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 –468

61, 2010. doi:10.25080/Majora-92bf1922-00a.469

38 T. Yato. On the np-completeness of the slither link puzzle. 2003.470

WTCP 2023

https://developers.google.com/optimization
https://www.gurobi.com/
https://doi.org/10.1038/s41586-020-2649-2
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
http://manpages.ubuntu.com/manpages/xenial/man1/tsp.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/tsp.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/tsp.1.html
http://ulog.udl.cat/static/doc/optilog/html/index.html
http://ulog.udl.cat/static/doc/optilog/html/index.html
http://ulog.udl.cat/static/doc/optilog/html/index.html
https://pypi.org/project/pypblib/
https://pypi.org/project/pypblib/
https://pypi.org/project/pypblib/
https://www.nikoli.co.jp/en/puzzles/slitherlink.html
https://www.nikoli.co.jp/en/puzzles/slitherlink.html
https://www.nikoli.co.jp/en/puzzles/slitherlink.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.3233/SAT190083
https://doi.org/10.25080/Majora-92bf1922-00a

	1 Introduction
	2 Preliminaries
	3 OptiLog Framework Architecture
	3.1 Formulas Module
	3.2 Modelling module
	3.3 Encoders Module
	3.4 Solvers Module
	3.5 Tuning Module
	3.6 Running Module
	3.7 BlackBox module

	4 Defining Problems
	5 Modelling and solving the Sudoku problem
	6 Modelling and solving the Slitherlink problem
	6.1 Modelling the Slitherlink problem
	6.2 Solving the Slitherlink problem

	7 Tuning the Slitherlink problem
	8 Running the Pac-Man project
	8.1 Processing Experimental Results

	9 Feedback from Using OptiLog in Education
	10 Future Work

