REHOMAIL ED CHECKING AND GRAESES
@ig Gad @B b

Carleton Cofirin, Jip Dekker, immy H.M. Lee, Jason Nguyen, Peter |. Stuckey, Guido Tack,
Allen Zhong

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

i CHECK MO

» Learning Modelling is HARD!

£ e more feedback we give learners the better
* Projects with automated feedback allow
» Modellers to understand how their model went wrong

» Help modellers find where their model went wrong

T CHECK MODELS (MO

* Massive Online Open Coursewares (MOOCs)

» Have many thousands of students

1 iecd [0 graded erther:
* by peer (very challenging for complex technical subject); or
* Automatically

Our MOOCS have >60000 enrolees

» Automatic feedback Is vital for students to progress in these challenging courses

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

BAr— COLORING EXAT.

SImple colouring model

ht: N;
set o 1nt: NODE = 1..n;
array[int] of tuple (NODE,NODE): e;
et off int: COLOR = 1..n;
array [NODE] of var COLOR: c;
constraint forall(p in e)

L elp.1l !'= clp.2]):
var COLOR: nc = max(c);
solve minimize nc;

number of nodes

o\

(undirected) edges
colors
decision: node color

ot of o

oV

coloring constraint

minimize used colors

o\

g lled.dZn holdsn = 5: e = [(1,2),(1,4),(2,3),(3,4),(3,5),(4. 511}

P oIC CHECKITNGS

D data (d.dzn) n =5; e = [(1,2),(1,4),(2,3),(3,4),(3,5), (4 =1

e 11 .2 . 3.3,2]1: nc = 3: a solution!

* We can check simply by running the (correct) model
7 ihe color.mzn d.dzn -D'c = [1,2,3,3,;2]:"

» MiniZinc responds: Warning: model inconsistency detected\n in call

‘forall’\n 1in array comprehension expression\n with p = (3,4)\n in
ey - operator expression

P oIC CHECKITNGS

* For this example, quite a good error message from compiler

» Usually just =====UNSATISFIABLE=====

e A correct model can check answers

» Beware: symmetry breaking! constraint seq_precede_chain(c);

B e correct answers;eg. ¢ = [2,1,2,1,3];

Pl F MULILIPLE ASSIGINIMIERTES

* Why not
§ anizanc color.mzn d.dzn -D"c = (1,2,3,3,2]; nc = 3;

* Response: Error: type error: multiple assignment to the same
variable

¢ FIX

e minizinc color.mzn d.dzn -D"c = [1,2,3,3,2]; nc = 3;" —allow-
multiple—assignments

LN C BASIC CHECKITNES

» Flag:—output—mode dzn
» Outputs all declared variables without RHS definitions

F 1 tiect as Input to be checked

» Flag:—output—objective
» Outputs the objective value: _objective = ¢

» Jool:mzn—-tTest.py automates basic checking

P oIC CHECKITNGS

» Correct/incorrect but usually no useful feedback
» Fine for e.g. scoring solutions in a competition &

» Not valuable as a teaching tool

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

P HEPUN FEFIDBAL

» CP languages are perfect for expressing constraints
» [hey are also good for writing error detection

» MiniZinc 1s very good for providing feedback on errors in solutions

FHECKER MOUDETE

» A weakness of basic checking is If the input format it not correct
g minizinc color.mzn d.dzn -D"c = [1,2,3,2];"

 Qutput:Error: evaluation error: Index set mismatch. Declared

index set of 'c¢' is [1..5], but is assigned to array with index
set [1..4]. You may need to coerce the index sets using the

arrayld function.

» (Checkers need to handle incorrect input as gracefully as possible

EA P E CHECKER MOTHES

« Jakes the same data declarations, treats decisions as fixed

\0

g o 5
fel 0fF 1nt: NODE = 1..n;

array[int] of tuple (NODE,NODE): e;
set of int: COLOR = 1..n;

%%% parameter declarations indentical to
arraylint] of int: c;
iRE: NC;

o® oP

oP oP°

number of nodes

(unidirected) edges
colors

mode L

decision: node color
decision: no colors

%%% decision declarations relaxed and not var

EA P E CHECKER MOTHES

Check input length

» Check each constraint in the-ea®ut of the check model!
output [if check(length(c) = n, "Color array \(c) does not have length \(n)\n") /\

forall(i in NODE) .
(check(c[i] in COLOR, Check valid values

‘node \(i) 1is colored \(c[i]) outside range 1..\(n)\n7)) /\
fo'{iﬁ;éﬁ(é?p?i] o Check colouring constraint
iadjacent nodes \(p.l) and \(p.2) are both colored \(clp.1])i\nil]
let { int: colors_used = card({ co | co in c}); } in
check(nc = colors _used,
"Declared objective \(nc) not
then "ALL CONSTRAINTS HOLD\n"
else "ERROR in solution"
endif 1;

a] to number of colors used \(colors used)\n")

Check objective Is correct

Note that use of NnCc = max(c) INCORRECTLY fails correct solutions

FEEDALR

§ e checker gives feedback, e.g.

S i aic d.dzn color.mzc.mzn -D'’c = [1,2.3.3.2]: nec = 3: =

ERROR: adjacent nodes 3 and 4 are both colored 3
ERROR 1in solution

» Checker models can be run with the original model, e.g.

e minizinc color.dzn d.dzn color.mzc.mzn —-a

» Will check every solution created by color.mzn

CHECKING LIBRARY

» The check function is just MiniZinc

test check(bool: b, string: s) =
if b then true else trace("ERROR: " ++ s, false) endif;

* We have a set of standard checking functions, although we don't distribute them with Minizinc currently
» check_1int: check an integer is in domain
» check_array_1int:check each integer in an array in domain

- check _alldifferent: check alldifferent holds

OBIECTIVE FEEDBALE

» [t Is tempting to Ignore the objective
- LESSON LEARNT.
» Many students make mistakes in defining the objective

» Checkers should give feedback about this too

FHIECKERS AND PRUIJECES

» Default name for a checker for mode l.mzn is model.mzc.mzn

 [he .mzcC tells MiniZinc ts a checker file

» By default a checker will be run It available in the project

FHIECKERS AND PRUIJECES

m Run and check

Al
Wi
V
S

»

O @& %

S : v A
New model Open Save : Copy Cut Paste Undo Shift left Shift right : Run + check Gecode 6.3.0 v

Show configuration editor
color.mzn d.dzn color.mzc.mzn
1 int: n; % number of nodes

2 set of int: NODE = 1..n;

3array[int] of tuple (NODE,NODE): e; % (unidirected) edges
4 set of int: COLOR = 1..n; % colors

5 array [NODE] of var COLOR: c; % decision: node color
6 constraint forall(p in e)

7 (clp.1] '= c[p.2]); % coloring constraint

g var COLOR: nc = max(c);

9 solve minimize nc; % minimized used colors

10

11

12

Q@ Output

Hide all v dzn v default v Errors
C =14, 1, £, 1, 31,

Finished in 296msec.

Running color.mzn, d.dzn, color.nzc.nzn Checker output

% ALL CONSTRAINT HOLD
c=12,1, 2,1, 3];

Finished in 283msec.

Line: 5, Col: 62 283msec

FPIECKER AND PROJECS

£ Elble chieckers sive too much Info on the project, e.s.

forall(p in e)
fehecklelp.l1]l 1= c¢[p.2],
‘adijicent nodes \(p.l) and \(p.2) are both colored \(clip.1]) o)]

& 0 (lieckers ¢an be compllediencrypted

* minizinc —compille-solution—-checker color.mzc.mzn

£ Ur lsing complle button in the |DE
» Encrypted form usually included in the project

N laici ot seriously encrypted a truly dedicated student could eventually decrypt.

FHIECKERS AND PRUIJECES

Project file

S s BV = = Solver configuration: OL P
- B & B ¢ > 7
New model Open Save Copy Cut Paste Shift left Shift right Gecode 6.3.0 < Show configuration editor
color.mzn d.dzn color.mzc Project P 't 't 'I:
l - | | LN roject contents
1 @eAF1U8tu2zAQvPsrtjxJs0AiPdrQIYgDtIBhA@5ujhBQ5MpmSpMuuQrQpvn3LsXEUQHnogd3Zmf2QeOU7TWCiN4g 1] color.mzp
+Y3gMgLEZzzpDxLs60f5xYTMwZQ9qa9nxKc3CLSUQC38HwWu94sb6GGq9mMAzIE+Rt2HGgSgPqTxSIhqgFXzgH/ Models
Z99sVpvtZz/ zn) color.mzn
QBod51+cP3d0qJAR20A6qThUW3p@0hyrp21bjx1gfIScRO2v lwIMTB6VSA9hjBeYKDfEbIVBHIJACDEYV8fQA+k9 Data (right click to run)
YWubyhdqZhK91qJZxPbTkTzZDdRFBJHPVYmI 1D LG1HW6wg3R5TqZd0/4JJKqINzUUXp91V86V0729NJaR+kgodcU @ d.dzn
2aK/ .
vIyLBBVLgxFyb104DQei79kt2kMPJzSn4wm+FOE7zkgSRmfOwjs2tQMuj iRXnG84MI6rV8Te81i+3aqrkeMsixRWX Checkers (right click to run)
ahwbdPgMjwNEbtyMNKc8JfvbRAH1x/bDGkfch5YFAe+f71/m6+LIEO6EBcrlY8t/Xd/fb6x/ Eﬁcxﬂonnmc

r+Dr5vVksGANrIsrfbLS8fe+WLOKTt54DTpmsWE8JIIbzvWem/
n@FaRgnH70cSSy+YNbLMGhR5zPgo8kSJInnSeDseokB8qcdXSp9ta3HHm7VI8A6yAjkg==

Encrypted checker

0 @ Output

Hide all v dzn v default v Errors v Warnings v Standard Error

Finished in 873msec.

Running color.mzn, d.dzn, color.mzc 279msec
ERROR: Declared objective 4 not equal to number of colors used 3

ERROR: Declared objective 4 not equal to number of colors used 3

% Solution checker report:

% ERROR in solution

c=1[3, 2, 3, 2, 4];

Finished in 279msec.

Line: 11, Col: 33 279msec

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

HIDDEN VARIABLES

 Sometimes the variables we want to check a constraint

* Arent part of the solution

« How do we handle this!

» Now we find out why checking 1s done In output!

OO LINEUF EXAFIEEE

» Consider lining up a list of people In a photo such that:

» No more than two of a gender in a row

- Minimising total distance between people adjacent in the list

» Starting model

enum PERSON;

int: n = card(PERSON):

enum GENDER = { M, F, 0 };:
array [PERSON] of GENDER: g;

gcet of 1nt: POSN = 1..n:

array [PERSON] of var POSN: pos;

of of of oF o of

set of people

number of people

set of genders

the gender of each person
set OF posSitions

decs:

a position for each person

HIDDEN VARIABLES

B Il order to enforce the gender constraint

» We want the inverse viewpoint
array [POSN] of var PERSON: who; % view: a person for each position

» Adding the viewpoint to the Initial model gives the game away

* We want to compute the viewpolint during checking

PO O LINEUP SOLUFICES

* Full model

enum PERSON;

int: n = card(PERSON):

enum GENDER = { M, F, 0 };
array [PERSON] of GENDER: g;

06k 0 1nt: POSN = 1..n;

array [PERSON] of var POSN: pos;

set of people

number of people

set 0f genaers

the gender of each person

set of positions

decs: a positionh for each person

o° 0P o 0P 0P o°

array [POSN] of var PERSON: who;
1fcllide inverse.mzn':
constraint inverse(pos,who);
constraint forall(i in 1..n-2)
(glwho[1i]] '= glwholi+1]] \/
glwho[i+1]] !'= glwho[i+2]]);
solve minimize sum(p in PERSON where p < max(PERSON))
(abs(pos[p] - posl[enum_next(PERSON,p)]l));

0P

view: a person for each position

channel from decisions to view

o?°

EIECKING WITH HIDDEN VARIASESS

» [he checker computes the values of hidden variables

(Hidden) decision variables

» BUT make sure they can take a value

array [PERSON] of int: pos;
array[POSN] of var PERSON: who;
constraint if forall(i in PERSON) (pos[i] in POSN)
alldlfferent (pos)
then inverse(pos,who)
else forall(i in 1..n)(who[i] = min(PERSON)) endif;

Bl c=h arlables are decision variables for the checker model

» Usually best that they are fixed by constraints Default value constraints

EECKING WITR RIDDEN VARIASESS

* We can make use of hidden variables values in output Checking ordering constraint

output [if check_array_int(pos, n, POSN, "pos") /\ using hidden varibales
check _alldifferent(pos, "pos") /\

forall(i in 1..n-2)

(check(g[fix(who[i]l)] != glfix(who[i+1])] \/ S SN
L halin) s arriduhelion] Short circurt computation:

"three people of the same gender " ++ checking won't reach here It
“\(g[T1X(who[1])])" ++

i positiens \(1)..\(1+2)\n')] /\ inverse view not defined
let { int: obj = sum(p in PERSON where p < max(PERSON))
(abs(pos[p] - posl[enum_next(PERSON,p)]l)); } in
check(obj = _objective, "calculated objective \(obj) " ++
"does not agree with computed value \(objective)\n")
Lhen 'CORRECT: All constraints hold!
else "INCORRECT" endif];

» The f1X function converts a var to a par (available in output only)

VIDUALISING SOLUT OTSS

* Another kind of feedback that checkers can provide is visualisation of

solutions
» We can just use output statements (ASCII visualisation)
» Or provide arbitrary graphics (D3 javascript)

* We can show the “hidden viewpoint” without mentioning it explicitly’

VIDUALISING SOLUT OTSS

» Simple visualisation for the photo lineup problem
GEEOLE | N (whol1]) (\(gfwhofi]])), " | 1 in 1..n] ++ ["“\n"]:

» Shows the lineup with gender

» Easy to check It order constraint Is violated

% Solution checker report:

% CORRECT: All constraints hold

HEL (F), LIAM (0), KARA (0), ED (M), JIM (M), ANN (F), BOB (M),
e 8, 7, 5, 4, 3, 2, 11;

T ECKERS SUMIMIATRE

MiniZinc model taking decision vars and objective as fixed arguments
VWeaken the type of decision variables to be as broad as possible

Add variable declarations for hidden variables

Constrain the hidden variables to compute the hidden viewpoint

* Ensure the constraints cannot fall
Build an output statement that checks
* [ype/domains of decision variables

» Checks constraint and points out exactly where a constraint fails

& - & eonstraints on hidden variables

 Recalculates the true objective and compares to input value

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

ERADING CP SOLUTICORES

» Optimisation solutions can be automatically graded

f 11t they must be correct

» But then we can grade them on the objective value reached

WO cholces
» Known data: the student just submits solutions (unlimited runtime)

« Unknown data: the student submits the model

ERADING CP SOLUTICORES

s iown Data:

» Advantage: student sees for which data their model works well/badly

» Disadvantage: copying solutions Is easy, does not check modelling

s | Unknown Data:

» Advantage: can test weird side cases/completeness of model

» Disadvantage: students find it frustrating to improve on unseen data

AU O GRADING

| he autograder system supports both

« Known data

» By default run on the students machine with fixed runtime

» Model submission/Unknown Data
* Run on many data instances on the server

» Usually a short runtime

EECKING + AU TO GRALHEES

* FOr assisnments we usually provide a very basic checker

E ohiecks that the output from the model Is the correct format

« Detalled checkers:

» oreat for self directed learning

» not so great for assessing students skills and knowledge

BUILDING A GRADER

§ Siinilar to a checker:

- [akes the input data

» Also a set of objective value thresholds for each instance

arrayl[int] of float: thresholds;

* LESSON LEARNT: Build a complete error checker with detalled messages

» It the solution Is valid compute score using thresholds otherwise O

BUILDING A GRADER

» We bulld a detalled error string (not using output statement)

jiniction string: check(bool: b, string: s) =
If b Llien ¢ else 'FRROR: @ LtE S endif;

string: errors = check(length(c) = n, "Color array \(c) does not have length \(n)\n") ++
concat(i in NODE)
(check(c[i] in COLOR,
‘node \ (1) 1s colored \(cfi]) outside range 1..%\(n)\n)} &
concat(p in e)
(check(c[p.1l] !'= clp.2],
‘adjacent nodes \(p.l) and \(p.2) are both colored \(clp.l]) in }}:

» | he detalled output avallable to marker but not to student

BUILDING A GRADER

* We usually assign a grade depending on the proportion of thresholds passed

gloct: grade = 1T errors l= 7 then 0.0
else mgrade(_objective,thresholds) endif;

Bllict 01l float: mgrade(int: v, arraylint] of float: t) =

et f int: | = length(t);
int: p = arg max([v < t[i] | 1 in index set(t)] *++ [truecl}l: &
in (p-1) / 1;

* e.g Maximising with thresholds [0,20,25,29,30] and obj 26 gives 0.6

» This is all programmed In the grader as you want it

* Write a grading function using the thresholds in any way you choosel!

CRADING MODETS

» For MOOCs grading of submissions must be automatic

» For Monash subjects we use

» Auto grading only for the first assisnment

» Auto grading plus grading a written report for later assisnments

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lZIinc Project Files

*Non-MiniZinc Checking/Grading

B/ INC PROJECT TS

» MiniZinc allows the creation of projects including:

» Models: usually a starting model with correct data defines

» Data: a directory of data files

f © Tiecker: encrypted

E nission lInks: so submission can be made from the ID

* Loading a project file brings the IDE to a fixed state

O

: “ : Starting model.
@& s [B e @, Note no decision variables

4
Wi

New model Open Save Copy Paste Shift left Shift right Run + check v Submit to FIT5216 S1 2023
airdefence.mzn \ Project \
1% Building an airdefence plan Assignment 1 Airdefence g
2 int: W; % width of area Models

3set of int: COL = 1..W; N
4 int: H; % height of area
5 set of int: ROW = 1..H;

3 (right click to run)

6 V .
7 array [ROW,COL] of int: value; % value of posities=® means unavailable Checkers gt click toTe
8 ! 8 models
9 enum EQUIPMENT; % different units available
10 Other files
11 array [EQUIPMENT] of int: cost; % cost of unit Mooc '
12 array [EQUIPMENT] of int: avail; % number available - D ‘t f‘ d ‘t
13 array [EQUIPMENT] of int: radius; % max defense radius a a | e |reC Ory
14
15 int: budget; % budget for equipment;
16 int: limit; % max number of equipment;
17
0@ Output

(Basic) Checker includea

Submit button

B DING PROJEC

* We have Infrastructure for constructing projects

® | olnponents:
- data: visible data instances
- data_hidden: hidden instances (model checking)
» mode Ls: starting model, full solution, checker, grader
» PDF: document describing the project

& sLbmit a zIp tile to the project bullder page

Name

——

v [data

[zn| airdefence01.dzn
[zn) airdefence02.dzn
(7] airdefence03.dzn
[zn| airdefence04.dzn
[zn) airdefence05.dzn
(1] airdefence06.dzn
[zn| airdefence07.dzn
[zn airdefence08.dzn
[zn| airdefence09.dzn
[zn] airdefence10.dzn

v [data_hidden

[zn| airdefence11.dzn
[zn] airdefence12.dzn
[z7) airdefence13.dzn
[zn| airdefence14.dzn
[zn] airdefence15.dzn
[zn| airdefence16.dzn
[zn) airdefence17.dzn
[z7) airdefencel18.dzn
[zn| airdefence19.dzn
[zn] airdefence20.dzn

v 7 models
.. airdefence-grader.mzc.mzn
[zn] airdefence-solution.mzn

.. airdefence.mzc.mzn
[zn) airdefence.mzn

v [0 PDF
= airdefence.pdf

VDOVVOVOVDVDVVVOOVVDVOVOVOODPVVOOD »

D

D

Date Modified

19 Jan 2023 at 12:54 pm
30 Jan 2023 at 1:50 pm
30 Jan 2023 at 1:50 pm
28 Jan 2023 at 2:26 pm
28 Jan 2023 at 2:28 pm
28 Jan 2023 at 2:29 pm
28 Jan 2023 at 2:37 pm
30 Jan 2023 at 1:50 pm
30 Jan 2023 at 1:50 pm
28 Jan 2023 at 2:51 pm
30 Jan 2023 at 1:18 pm
28 Jan 2023 at 2:09 pm
28 Jan 2023 at 3:34 pm
28 Jan 2023 at 2:58 pm
28 Jan 2023 at 2:59 pm
28 Jan 2023 at 3:02 pm
30 Jan 2023 at 1:25 pm
28 Jan 2023 at 3:16 pm
28 Jan 2023 at 3:30 pm
28 Jan 2023 at 3:32 pm
28 Jan 2023 at 3:36 pm
28 Jan 2023 at 3:41 pm
19 Jan 2023 at 12:54 pm
30 Jan 2023 at 1:29 pm
28 Feb 2023 at 11:58 am
28 Jan 2023 at 4:02 pm
28 Jan 2023 at 3:43 pm
Today at 12:56 pm

30 Jan 2023 at 1:48 pm

407 bytes
423 bytes
608 bytes
430 bytes
608 bytes
608 bytes
581 bytes
416 bytes
552 bytes
553 bytes
407 bytes
408 bytes
437 bytes
437 bytes
423 bytes
558 bytes
558 bytes
490 bytes
494 bytes
645 bytes

7 KB

4 KB

2 KB
560 bytes

136 KB

Kind

Folder
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
Folder
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
MiniZinc Data
Folder
MiniZinc model
MiniZinc model
MiniZinc model
MiniZinc model
Folder

PDF Document

B DING PROJEC

* LESSON LEARNT: Build a full solution to the assisnment yourself
» Useful for testing checker, grader; particularly error messages
» Used for setting thresholds for each instance
* Test grader well
* When the grader Is wrong you will suffer
» Beware of “correct’ solutions that your solution would never generate
» [he Infrastructure allows it to be changed (and automatically regrades)

» Build a visualiser If its easy enough

SUIBIMISSION OF PROJECTES

Problems to run and submit

v Airdefence 1

' ' ' v Airdefence 2

» [he submit button open a submission D e
; v Airdefence 5

v Airdefence 6

WI n d OW v Airdefence 7

v Airdefence 8

v Airdefence 9
v Airdefence 10

. S_tuden_t | D Models to submit

v Airdefence Model 1

Login information

FIT5216 S1 2023 login email:

» Submission token (1d verification)

Remember login details

Selected solver configuration for running models

Chuffed 0.12.1

« Choice of which known data/whether

Terms of submission

| d —t | certify that this submission is all my own work, | have not looked at other

u n <n OW n a a | S r u n students submissions, nor asked questions about the assignment to
anyone not involved in running the course, nor used a large language
model like ChatGPT to develop any part of the solution. | am aware that all

| have read and accept the above terms and conditions

* Perhaps some statement to acknowledge

Submission output

« Submits via web Interface

Close

5 UDENT INTEREAETE

s Students can examine

% Home Page - my.monash X ?Q’, FIT5216_S1_2023: Assignmern X + v

@ Ims.monash.edu/mod/lti/view.php?id=11405614 h % © @

= Mr%lgé%_[@ @ @ @ @ @ Peter Stuckey

Bl ice@back irom all thelr submissions I

Dashboard / My units / FIT5216_S1_2023 / Assessments / Assignment 1 MiniZinc submission

. p— . . . Quick Links
Assignment 1 MiniZinc submission ©

V4 AIlITuciIcliLe 7
MiniZinc auto grader

» all text of all their submissions

[FIT5216 Handbook
Admin > Airdefence Model 1 10/10

BB My Grades
Total 20/20 & IT Student Portal
z Become a student for this sessiol
* Leaderboard If enabled e L
Learners Date Score Awards
Sign out (C 2
> 09March2023at 11:01 AM AEDT 20/20 Regrade Download —_—
:\./
> 28February 2023 at 1:27 PM AEDT 13/20 Regrade Download CI g E Recoanise ar
; ‘ =y " Excellent
ebruary at1: egrade ownloa TR N
O > 28 February 2023 at 1:02 PM AEDT 20/20 Regrad Download A feachers
> 27 February 2023 at 10:17 AM AEDT 20/20 Regrade Download Nominate your teacher, supervisor, or
: . Ol (] &8 Teaching Award
Assi t 1 Moodle submissi Logged in user
4 Assignment 1 Specification Jump to... s ssignmen . oodie submission 99
(Weight: 5%) »
Peter Stuckey

£ Lbmission numbers can be limited

s RUC TOR IN TERFAEEE

) ‘ n S'tru C‘to rS Can % Home Page - my.monash X @, FIT5216_S1_2023: Assignmen X +

@& Ims.monash.edu/mod/lti/view.php?id=11405614

B Uersty OIIGICIC

» Examine all submissions, and all (detailed) feedback

¥
e ////,

elling discrete opt

* View detalled log of submission

Dashboard / My units / FIT5216_S1_2023 / Assessments / Assignment 1 MiniZinc submission

Assignment 1 MiniZinc submission

» Impersonate an individual student

Home

v Airdefence 5 1/1

Feedback
Admin

CORRECT: no errors found

» Modify grader and regrade some or all solutions

Logs
FIT5216 S1 2023

INFO:root:Grader started: ['/worker.py']
INFO:root:Submission partId: Kio9Sago9P

° I\/l d lf : .t b _t _t d _t d _t d | d e ' INFO:root:Initialising exercise library from /shared/assignment/meta.yml

O | >/ p rOJ eC u S u en S n ee O re_ OWH Oa Sign out INFO:root:Exercise Kio9Sago9P parsed as: SolutionExercise(name='Airdefence
5', checker=PosixPath('/shared/assignment/models/airdefence-

grader.mzc.mzn'), timeout=datetime.timedelta(seconds=15), solver='gecode',

param file=None, UNSAT=False,

data=PosixPath('/shared/assignment/data/airdefence05.dzn'), thresholds=[0.0,

60.0, 67.0, 68.0])

INFO:root:Grading solution exercise “Airdefence 5°

INFO:root:Submission contained the OPTIMAL_ SOLUTION status

TNENevrAnt+ eDiin /echarad/aceimanmant /Imadale /aivAafan~ra_~vradar moe~ mon nrit+h

& BExamine grader queue

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

NON-MINIZINC CHECKING/GRADING

» What it my projects aren't in MiniZinc!

- WHY? @

* Most of the Infrastructure can still be usead

£ HOVV!

NON-MINIZINC CHECKING/GRADING

» Obviously we don't support Essence/OPL/Gecode MiniModel/MyravoriteSolver/ model
SUDbMISSIONS

» But the infrastructure can be used for known data checking/grading

* Define MiniZinc versions of the decision variables

* For each Instance build a MiniZinc data file with

* |nstance number; sizes of each of decision variables

* Give a template MiniZinc model for students to fill in the solutions they find

NON-MINIZINC CHECKING/GRADING

In|
) 7 A ~ =g B
| W& X 0E 6 « » D
New model Open Save Copy Cut Paste Undo Shift left Shift right Run

nonmzn.mzn

v

Solver configuration:

Gecode 6.3.0

% »

Show configuration editor

1
® 1 int: instance_no; % instance number (in data file)
O u |O n | e .l I Izn 2 int: sizel; % size of solution_vars_1
3int: size2; % size of solution_vars_2

4 array[l..sizel] of var int: solution_vars_1;
sarray[l..size2] of var int: solution_vars_2;

6
7 constraint if instance_no = 1 then
8 solution_vars_1 = [1,5,2,3,2] /\ % values added by student
9 solution_vars_2 = [123,452,367,146,241,8,5,4,2,5]
® eC <e r WO r <S aS 10 elseif instance_no = 2 then
11 solution_vars_1 = [4,5,9] /\
12 solution_vars_2 = [1018,231,146,909,562,673]
13 else
14 solution_vars_1 = [4,5,9,8] /\
u S u a 15 solution_vars_2 = [1018,231,146,12,1005,345,123,13]
16 endif
Q@ Output
[[Hide all v dzn
2 SUbl Nission and srader
¥ Running nonmzn.mzn 92msec
solution_vars_1 = [1, 5, 2, 3, 2];
solution_vars_2 = [123, 452, 367, 146, 241, 8, 5, 4, 2, 51;
WOork as usual

Line: 8, Col: 49

92msec

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

FAFPERIENCE

* We have used some form of auto grading since 2016

= fiest L allisera Course

® Lidnt use the output trick” nad two graders
& - [0 ciieck [he hidden variables were defined and compute trhem
* One to check the solution with hidden variables

» Used Python-based submission script rather than projects

* On Coursera more than 60000 students probably > 500K assignments markead

FAFPERIENCE

We use the same Infrastructure for Monash modelling course
3 assignments: grader + format checker
» Make up assignment marks
20 workshop questions: detalled feedback checker
» Participation marks only
In the 2023 version: 80 students
» a total of 8043 assignment submissions: 33 per person per assignment!
*+ A tofal of 2143 workshop submissions (remember this is not number of checks)

» Any submission gets the full participation marks, so students did work to get full marks

FAFPERIENCE

* We have other Infrastructure built, used in our online Monash course

* Peer feedback

» After submission date closes

» Each student 1s asked to give feedback on X other students models
* [he feedback 1s made avallable to the original student

t Ihe lecdback given Dy a student Is used In computing their grade.

* Peer feedback Is a useful learning tool, we plan to use 1t for workshop guestions

OUTLINE

» Checking Models

*Basic checking

*Error messages

*Hidden variables
» Grading Models
*Grading by objective

£ lLInc Project riles

*Non-MiniZinc Checking/Grading

LN USIC

* Providing detalled feedback to modellers about errors in their solution Is:
e ot [oo difficult Tor CF problems
£ o1 Uselulfor student learning
* Providing automatic grading for assisnments Is
= P alired for MOOCs
» Useful for any course (allows multiple submissions/learning/improvement)

* VWe hope you can take some of these ideas/tools and make use of them

DUEDTIOND

* Find MiniZinc at minizinc.org

