
AUTOMATED CHECKING AND GRADING
OF CP MODELS

Carleton Coffrin, Jip Dekker, Jimmy H.M. Lee, Jason Nguyen, Peter J. Stuckey, Guido Tack,
Allen Zhong

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

WHY CHECK MODELS?
• Learning Modelling is HARD!

• The more feedback we give learners the better

• Projects with automated feedback allow

• Modellers to understand how their model went wrong

• Help modellers find where their model went wrong

WHY CHECK MODELS (MOOC)?
• Massive Online Open Coursewares (MOOCs)

• Have many thousands of students

• Need to graded either :

• by peer (very challenging for complex technical subject); or

• Automatically

• Our MOOCS have >60000 enrolees

• Automatic feedback is vital for students to progress in these challenging courses

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

GRAPH COLORING EXAMPLE
• Simple colouring model
int: n; % number of nodes
set of int: NODE = 1..n;
array[int] of tuple (NODE,NODE): e; % (undirected) edges
set of int: COLOR = 1..n; % colors
array[NODE] of var COLOR: c; % decision: node color
constraint forall(p in e)
 (c[p.1] != c[p.2]); % coloring constraint
var COLOR: nc = max(c);
solve minimize nc; % minimize used colors

• Data file: d.dzn holds n = 5; e = [(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)];

•

Springer Nature 2021 LATEX template

Solution Checking with MiniZinc 3

and how we can use this as an online resource for checking candidate solutions
of projects.

2 Building Solution Checkers

In this section we develop a MiniZinc-based methodology for building solu-
tion checkers which give meaningful feedback to learners when they check an
erroneous candidate solution.

It is important to emphasise that this checking system does not impose
any restrictions on the modelling or solving technology used by the learner. In
this work we will use MiniZinc for building example solutions, but this is not
required for the use of the solution checkers considered here, although some
things will be easier if we are checking MiniZinc models.

2.1 Solution Checking by Correct Model

The simplest way to use a MiniZinc model as a solution checker is to encode
values of the candidate solution’s decision variables in a data file (.dzn) format.
The resulting data file can then be read in with a correct model of the original
problem definition.

Example 1 Consider a simple graph coloring problem, given n nodes, and a list of
m edges, color each node with at most k colors such that no two adjacent nodes
are colored the same. The aim is to minimize the number of colors used. A correct
MiniZinc model color.mzn for this problem is

int: n;

set of int: NODE = 1..n;

int: m;

set of int: EDGE = 1..m;

array[EDGE] of NODE: from;

array[EDGE] of NODE: to;

int: k;

set of int: COLOR = 1..k;

array[NODE] of var COLOR: x; % color of each node

var NODE: nc; % number of colors used

constraint forall(e in EDGE)(x[from[e]] != x[to[e]]);

constraint nc = max(x);

solve minimize nc;

For this example, we will consider a small data file small.dzn representing the graph
shown on the right:

n = 5;

m = 6;

k = 4;

from = [1,1,2,3,3,4];

to = [2,4,3,4,5,5];

1 2 3

4 5

We can check a candidate solution x = [1,2,3,3,2]; nc = 3; (written in .dzn

format) to the model by just adding it to the data used in solving (here using the
inline data file flag -D)

BASIC CHECKING

• Given data: (d.dzn) n = 5; e = [(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)];

• Is c = [1,2,3,3,2]; nc = 3; a solution?

• We can check simply by running the (correct) model

• minizinc color.mzn d.dzn -D”c = [1,2,3,3,2];”

• MiniZinc responds: Warning: model inconsistency detected\n in call
‘forall’\n in array comprehension expression\n with p = (3,4)\n in
binary '!=' operator expression

Springer Nature 2021 LATEX template

Solution Checking with MiniZinc 3

and how we can use this as an online resource for checking candidate solutions
of projects.

2 Building Solution Checkers

In this section we develop a MiniZinc-based methodology for building solu-
tion checkers which give meaningful feedback to learners when they check an
erroneous candidate solution.

It is important to emphasise that this checking system does not impose
any restrictions on the modelling or solving technology used by the learner. In
this work we will use MiniZinc for building example solutions, but this is not
required for the use of the solution checkers considered here, although some
things will be easier if we are checking MiniZinc models.

2.1 Solution Checking by Correct Model

The simplest way to use a MiniZinc model as a solution checker is to encode
values of the candidate solution’s decision variables in a data file (.dzn) format.
The resulting data file can then be read in with a correct model of the original
problem definition.

Example 1 Consider a simple graph coloring problem, given n nodes, and a list of
m edges, color each node with at most k colors such that no two adjacent nodes
are colored the same. The aim is to minimize the number of colors used. A correct
MiniZinc model color.mzn for this problem is

int: n;

set of int: NODE = 1..n;

int: m;

set of int: EDGE = 1..m;

array[EDGE] of NODE: from;

array[EDGE] of NODE: to;

int: k;

set of int: COLOR = 1..k;

array[NODE] of var COLOR: x; % color of each node

var NODE: nc; % number of colors used

constraint forall(e in EDGE)(x[from[e]] != x[to[e]]);

constraint nc = max(x);

solve minimize nc;

For this example, we will consider a small data file small.dzn representing the graph
shown on the right:

n = 5;

m = 6;

k = 4;

from = [1,1,2,3,3,4];

to = [2,4,3,4,5,5];

1 2 3

4 5

We can check a candidate solution x = [1,2,3,3,2]; nc = 3; (written in .dzn

format) to the model by just adding it to the data used in solving (here using the
inline data file flag -D)

BASIC CHECKING
• For this example, quite a good error message from compiler

• Usually just =====UNSATISFIABLE=====

• A correct model can check answers

• Beware: symmetry breaking! constraint seq_precede_chain(c);

• Can reject correct answers: e.g. c = [2,1,2,1,3];

ASIDE MULTIPLE ASSIGNMENTS
• Why not

• minizinc color.mzn d.dzn -D”c = [1,2,3,3,2]; nc = 3;”

• Response: Error: type error: multiple assignment to the same
variable

• Fix

• minizinc color.mzn d.dzn -D”c = [1,2,3,3,2]; nc = 3;” —-allow-
multiple-assignments

MINIZINC BASIC CHECKING
• Flag: —output-mode dzn

• Outputs all declared variables without RHS definitions

• Perfect as input to be checked

• Flag: —output-objective

• Outputs the objective value: _objective = ?

• Tool: mzn-test.py automates basic checking

BASIC CHECKING

• Correct/incorrect but usually no useful feedback

• Fine for e.g. scoring solutions in a competition 😜

• Not valuable as a teaching tool

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

USEFUL FEEDBACK

• CP languages are perfect for expressing constraints

• They are also good for writing error detection

• MiniZinc is very good for providing feedback on errors in solutions

CHECKER MODELS
• A weakness of basic checking is if the input format it not correct

• e.g. minizinc color.mzn d.dzn -D”c = [1,2,3,2];”

• Output: Error: evaluation error: Index set mismatch. Declared
index set of `c' is [1..5], but is assigned to array with index
set [1..4]. You may need to coerce the index sets using the
array1d function.

• Checkers need to handle incorrect input as gracefully as possible

EXAMPLE CHECKER MODEL

• Takes the same data declarations, treats decisions as fixed
int: n; % number of nodes
set of int: NODE = 1..n;
array[int] of tuple (NODE,NODE): e; % (unidirected) edges
set of int: COLOR = 1..n; % colors
%%% parameter declarations indentical to model
array[int] of int: c; % decision: node color
int: nc; % decision: no colors
%%% decision declarations relaxed and not var
•

EXAMPLE CHECKER MODEL

• Check each constraint in the output of the check model!
output [if check(length(c) = n, "Color array \(c) does not have length \(n)\n") /\
 forall(i in NODE)
 (check(c[i] in COLOR,
 "node \(i) is colored \(c[i]) outside range 1..\(n)\n”)) /\
 forall(p in e)
 (check(c[p.1] != c[p.2],
 "adjacent nodes \(p.1) and \(p.2) are both colored \(c[p.1])\n”)) /\
 let { int: colors_used = card({ co | co in c}); } in
 check(nc = colors_used,
 "Declared objective \(nc) not equal to number of colors used \(colors_used)\n")
 then "ALL CONSTRAINTS HOLD\n"
 else "ERROR in solution"
 endif];
•

Check valid values

Check colouring constraint

Check objective is correct

Note that use of nc = max(c) INCORRECTLY fails correct solutions

Check input length

FEEDBACK
• The checker gives feedback, e.g.

• minizinc d.dzn color.mzc.mzn -D”c = [1,2,3,3,2]; nc = 3;”

ERROR: adjacent nodes 3 and 4 are both colored 3
ERROR in solution

• Checker models can be run with the original model, e.g.

• minizinc color.dzn d.dzn color.mzc.mzn -a

• Will check every solution created by color.mzn

CHECKING LIBRARY
• The check function is just MiniZinc
 test check(bool: b, string: s) =
 if b then true else trace("ERROR: " ++ s, false) endif;

• We have a set of standard checking functions, although we don’t distribute them with Minizinc currently

• check_int: check an integer is in domain

• check_array_int: check each integer in an array in domain

• check_alldifferent: check alldifferent holds

• …

OBJECTIVE FEEDBACK

• It is tempting to ignore the objective

• LESSON LEARNT:

• Many students make mistakes in defining the objective

• Checkers should give feedback about this too

CHECKERS AND PROJECTS

• Default name for a checker for model.mzn is model.mzc.mzn

• The .mzc tells MiniZinc its a checker file

• By default a checker will be run if available in the project

CHECKERS AND PROJECTS
Run and check

Checker output

CHECKER AND PROJECTS
• Visible checkers give too much info on the project, e.g.
 forall(p in e)
 (check(c[p.1] != c[p.2],
 "adjacent nodes \(p.1) and \(p.2) are both colored \(c[p.1])\n"))

• So checkers can be compiled/encrypted

• minizinc —-compile-solution-checker color.mzc.mzn

• Or using compile button in the IDE

• Encrypted form usually included in the project

• Note: not seriously encrypted a truly dedicated student could eventually decrypt.

CHECKERS AND PROJECTS

Encrypted checker

Project contents

Project file

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

HIDDEN VARIABLES

• Sometimes the variables we want to check a constraint

• Aren’t part of the solution

• How do we handle this?

• Now we find out why checking is done in output!

PHOTO LINEUP EXAMPLE
• Consider lining up a list of people in a photo such that:

• No more than two of a gender in a row

• Minimising total distance between people adjacent in the list

• Starting model
enum PERSON; % set of people
int: n = card(PERSON); % number of people
enum GENDER = { M, F, O }; % set of genders
array[PERSON] of GENDER: g; % the gender of each person
set of int: POSN = 1..n; % set of positions
array[PERSON] of var POSN: pos; % decs: a position for each person

HIDDEN VARIABLES

• In order to enforce the gender constraint

• We want the inverse viewpoint
array[POSN] of var PERSON: who; % view: a person for each position

• Adding the viewpoint to the initial model gives the game away

• We want to compute the viewpoint during checking

PHOTO LINEUP SOLUTION

• Full model
enum PERSON; % set of people
int: n = card(PERSON); % number of people
enum GENDER = { M, F, O }; % set of genders
array[PERSON] of GENDER: g; % the gender of each person
set of int: POSN = 1..n; % set of positions
array[PERSON] of var POSN: pos; % decs: a position for each person

array[POSN] of var PERSON: who; % view: a person for each position
include "inverse.mzn";
constraint inverse(pos,who); % channel from decisions to view
constraint forall(i in 1..n-2)
 (g[who[i]] != g[who[i+1]] \/
 g[who[i+1]] != g[who[i+2]]);
solve minimize sum(p in PERSON where p < max(PERSON))
 (abs(pos[p] - pos[enum_next(PERSON,p)]));

CHECKING WITH HIDDEN VARIABLES
• The checker computes the values of hidden variables

• BUT make sure they can take a value
array[PERSON] of int: pos;
array[POSN] of var PERSON: who;
constraint if forall(i in PERSON)(pos[i] in POSN) /\
 alldifferent(pos)
 then inverse(pos,who)
 else forall(i in 1..n)(who[i] = min(PERSON)) endif;

• Hidden variables are decision variables for the checker model

• Usually best that they are fixed by constraints

(Hidden) decision variables

Validity check

Default value constraints

CHECKING WITH HIDDEN VARIABLES
• We can make use of hidden variables values in output
output [if check_array_int(pos, n, POSN, "pos") /\
 check_alldifferent(pos,"pos") /\
 forall(i in 1..n-2)
 (check(g[fix(who[i])] != g[fix(who[i+1])] \/
 g[fix(who[i+1])] != g[fix(who[i+2])],
 "three people of the same gender " ++
 "\(g[fix(who[i])])" ++
 " in positions \(i)..\(i+2)\n")) /\
 let { int: obj = sum(p in PERSON where p < max(PERSON))
 (abs(pos[p] - pos[enum_next(PERSON,p)])); } in
 check(obj = _objective, "calculated objective \(obj) " ++
 "does not agree with computed value \(_objective)\n")
 then "CORRECT: All constraints hold"
 else "INCORRECT" endif];

• The fix function converts a var to a par (available in output only)

Checking ordering constraint
using hidden varibales

Short circuit computation:
checking won’t reach here if

inverse view not defined

VISUALISING SOLUTIONS

• Another kind of feedback that checkers can provide is visualisation of
solutions

• We can just use output statements (ASCII visualisation)

• Or provide arbitrary graphics (D3 javascript)

• We can show the “hidden viewpoint” without mentioning it explicitly!

VISUALISING SOLUTIONS
• Simple visualisation for the photo lineup problem
output ["\(who[i]) (\(g[who[i]])), " | i in 1..n] ++ ["\n"];

• Shows the lineup with gender

• Easy to check if order constraint is violated
% Solution checker report:
% CORRECT: All constraints hold
HEL (F), LIAM (O), KARA (O), ED (M), JIM (M), ANN (F), BOB (M),
pos = [6, 7, 5, 4, 3, 2, 1];

==========

CHECKERS SUMMARY
• MiniZinc model taking decision vars and objective as fixed arguments
• Weaken the type of decision variables to be as broad as possible
• Add variable declarations for hidden variables
• Constrain the hidden variables to compute the hidden viewpoint

• Ensure the constraints cannot fail
• Build an output statement that checks

• Type/domains of decision variables
• Checks constraint and points out exactly where a constraint fails
• Checks constraints on hidden variables
• Recalculates the true objective and compares to input value

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

GRADING CP SOLUTIONS
• Optimisation solutions can be automatically graded

• First they must be correct

• But then we can grade them on the objective value reached

• Two choices

• Known data: the student just submits solutions (unlimited runtime)

• Unknown data: the student submits the model

GRADING CP SOLUTIONS
• Known Data:

• Advantage: student sees for which data their model works well/badly

• Disadvantage: copying solutions is easy, does not check modelling

• Unknown Data:

• Advantage: can test weird side cases/completeness of model

• Disadvantage: students find it frustrating to improve on unseen data

AUTO GRADING
• The autograder system supports both

• Known data

• By default run on the students machine with fixed runtime

• Model submission/Unknown Data

• Run on many data instances on the server

• Usually a short runtime

CHECKING + AUTO GRADING
• For assignments we usually provide a very basic checker

• checks that the output from the model is the correct format

• Detailed checkers:

• great for self directed learning

• not so great for assessing students skills and knowledge

BUILDING A GRADER

• Similar to a checker:

• Takes the input data

• Also a set of objective value thresholds for each instance
 array[int] of float: thresholds;

• LESSON LEARNT: Build a complete error checker with detailed messages

• If the solution is valid compute score using thresholds otherwise 0

BUILDING A GRADER

• We build a detailed error string (not using output statement)
function string: check(bool: b, string: s) =
 if b then "" else "ERROR: " ++ s endif;

string: errors = check(length(c) = n, "Color array \(c) does not have length \(n)\n") ++
 concat(i in NODE)
 (check(c[i] in COLOR,
 "node \(i) is colored \(c[i]) outside range 1..\(n)\n")) ++
 concat(p in e)
 (check(c[p.1] != c[p.2],
 "adjacent nodes \(p.1) and \(p.2) are both colored \(c[p.1])\n"));

• The detailed output available to marker but not to student

BUILDING A GRADER
• We usually assign a grade depending on the proportion of thresholds passed
float: grade = if errors != “” then 0.0
 else mgrade(_objective,thresholds) endif;

function float: mgrade(int: v, array[int] of float: t) =
 let { int: l = length(t);
 int: p = arg_max([v < t[i] | i in index_set(t)] ++ [true]); }
 in (p-1) / l;

• e.g Maximising with thresholds [0,20,25,29,30] and obj 26 gives 0.6

• This is all programmed in the grader as you want it

• Write a grading function using the thresholds in any way you choose!

GRADING MODELS

• For MOOCs grading of submissions must be automatic

• For Monash subjects we use

• Auto grading only for the first assignment

• Auto grading plus grading a written report for later assignments

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

MINIZINC PROJECT FILES
• MiniZinc allows the creation of projects including:

• Models: usually a starting model with correct data defines

• Data: a directory of data files

• Checker: encrypted

• Submission links: so submission can be made from the IDE

• Loading a project file brings the IDE to a fixed state

PROJECT FILES
Starting model:

Note no decision variables

Data file directory

(Basic) Checker included

Submit button

BUILDING PROJECTS
• We have infrastructure for constructing projects

• Components:

• data: visible data instances

• data_hidden: hidden instances (model checking)

• models: starting model, full solution, checker, grader

• PDF: document describing the project

• We submit a zip file to the project builder page

BUILDING PROJECTS
• LESSON LEARNT: Build a full solution to the assignment yourself

• Useful for testing checker, grader, particularly error messages

• Used for setting thresholds for each instance

• Test grader well

• When the grader is wrong you will suffer

• Beware of “correct” solutions that your solution would never generate

• The infrastructure allows it to be changed (and automatically regrades)

• Build a visualiser if its easy enough

SUBMISSION OF PROJECTS
• The submit button open a submission

window

• Student ID

• Submission token (id verification)

• Choice of which known data/whether
unknown data is run

• Perhaps some statement to acknowledge

• Submits via web interface

STUDENT INTERFACE
• Students can examine

• all feedback from all their submissions

• all text of all their submissions

• Leaderboard if enabled

• By default mark is maximum of all
submissions

• Submission numbers can be limited

INSTRUCTOR INTERFACE
• Instructors can

• Examine all submissions, and all (detailed) feedback

• View detailed log of submission

• Impersonate an individual student

• Modify grader and regrade some or all solutions

• Modify project (but students need to re-download)

• Examine grader queue

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

NON-MINIZINC CHECKING/GRADING

• What if my projects aren’t in MiniZinc?

• WHY? 😜

• Most of the infrastructure can still be used

• HOW?

NON-MINIZINC CHECKING/GRADING
• Obviously we don’t support Essence/OPL/Gecode MiniModel/MyFavoriteSolver/ model

submissions

• But the infrastructure can be used for known data checking/grading

• Define MiniZinc versions of the decision variables

• For each instance build a MiniZinc data file with

• Instance number, sizes of each of decision variables

• Give a template MiniZinc model for students to fill in the solutions they find

NON-MINIZINC CHECKING/GRADING

• Solution file (.mzn)

• Checker works as
usual

• Submission and grader
work as usual

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

EXPERIENCE
• We have used some form of auto grading since 2016

• First Coursera Course

• Didn’t use the “output trick” had two graders

• One to check the hidden variables were defined and compute them

• One to check the solution with hidden variables

• Used Python-based submission script rather than projects

• On Coursera more than 60000 students probably > 500K assignments marked

EXPERIENCE
• We use the same infrastructure for Monash modelling course

• 3 assignments: grader + format checker

• Make up assignment marks

• 20 workshop questions: detailed feedback checker

• Participation marks only

• In the 2023 version: 80 students

• a total of 8043 assignment submissions: 33 per person per assignment!

• A total of 2143 workshop submissions (remember this is not number of checks)

• Any submission gets the full participation marks, so students did work to get full marks

EXPERIENCE
• We have other infrastructure built, used in our online Monash course

• Peer feedback

• After submission date closes

• Each student is asked to give feedback on X other students models

• The feedback is made available to the original student

• The feedback given by a student is used in computing their grade.

• Peer feedback is a useful learning tool, we plan to use it for workshop questions

OUTLINE
•Checking Models

•Basic checking
•Error messages
•Hidden variables

•Grading Models
•Grading by objective

•MiniZinc Project Files
•Non-MiniZinc Checking/Grading

CONCLUSION
• Providing detailed feedback to modellers about errors in their solution is:

• Not too difficult for CP problems

• Very useful for student learning

• Providing automatic grading for assignments is

• Required for MOOCs

• Useful for any course (allows multiple submissions/learning/improvement)

• We hope you can take some of these ideas/tools and make use of them

QUESTIONS

• Find MiniZinc at minizinc.org

