A review of the Constraint
Programming MOOC on EdX

Augqustin Delecluse, Guillaume Derval, Laurent Michel, Pierre
Schaus and Pascal Van Hentenryck

WTCP2023

Teaching in Constraint Programming

e Few universities proposes Constraint Programming (CP) courses
e Many discrete optimization courses focus on modeling

e Although modeling is important, there’s a need to teach CP mechanisms
developed over the years

The MOOC

e Hosted on edX, a Massive Open Online Course (MOQOC) provider
e MiniCP used as educational CP solver
e Content based on CP courses given at 4 universities, all using MiniCP
e Target audience: Master and PhD students, engineers, computer scientists
e Prerequisites

o Familiarity with object-oriented programming

o One algorithms course

o Familiarity with git ’
Mini

Content of the course

Learning outcomes - Solvers

e Familiarity with the architecture of a CP solver

e Understanding advanced CP mechanisms
o State restoration

o Domain implementation
O

e Develop ability to implement Global Constraints and propagators

e Understand most popular black box search techniques

e Learn to implement backtracking search and search combinators (e.g.
discrepancy search) within a solver

Learning outcomes - Modeling and Theory

e Engage with a wide range of combinatorial problems
o Focus on vehicle routing and scheduling problems
e Develop skills to test, extend and improve existing code within CP models
e Understand balance and trade-offs between pruning strength and time
complexity
o Understand consistency (bound, domain, etc)
e Gain the ability to manipulate and employ the most frequently used
constraints

o Sum
o Element
o AllDifferent

O
e Understand mechanisms and application of reified constraints
e Learn to implement a problem specific search, variable and value heuristics

Teaching methodology

e 10 modules. Each module consists of:

o Several videos (between 5 to 20 minutes)
o MCQ about the videos (25% of grade)
o Programming assignment (75% of grade)

e Features variety of speakers
e Focus first on key CP components
e Dives then into the most popular constraints

+ Valuable contributors to the teaching material: Pierre Flenner, Frej Knutar Lewander, Tias Guns,
Christophe Lecoutre, Charles Prud'Homme, Peter Stuckey, Guido Tack 7

Table of content

Applications of CP in

o Routing

o scheduling
CP as declarative paradigm
N-Queens model

Domain implementation for
Integer Variables
Interfaces for variables and
constraints

Fix-Point algorithm

DFS

State Management

Domain and bound
consistency

Sum and Element constraints
Reified constraints

Quadratic Assignment
Problem

Stable Matching Problem

[Introduction JI

Model a graph coloring
problem

B

B4

i

)

et

(b
|

™

> [MiniCP Solver J |

One constructor for Integer
Variables

Domain iterator
Maximum constraint

N Sum and
Element

Several propagators for
Element constraint
Stable Matching
implementation

Table of content

Usage of bitsets

Compact Table

[Table constraint } I

e Implement Compact Table

e Model Eternity Problem

Usage of Table constraint

Simple Tabular Reduction

Forward checking for
AllDifferent constraint
Regin’s algorithm for domain
consistency

Circuit constraint

Modeling TSP

Modeling VRP

Large Neighborhood Search

> [All Different } [

AlIDIff:
Forward
checking
AlIDiff: Regin’s
algorithm
Compare the
implem on
N-Queens

Variables Values

routing problems

y [TSP and Vehicle }

Circuit constraint

Custom search on TSP
Parameter tuning for existing
LNS

Transform TSP into VRP

Table of content

Time-Tabling filtering

LNS in scheduling

Modeling producer-consumer
Packing problems with
cumulative

job 1:
job 2:
job 3:
job 4:
job 5:
job 6:

Jobshop Problem
Disjunctive constraint
Theta-Tree datastructure

minimize makespan

First-Fail principle
Impact search
Activity-based search
Conflict-based search
Discrepancy search

Cumulative |
scheduling

e Cumulative decomposition

e Time-Tabling

e Resource-Constrained Project
Scheduling Problem

|

Modeling Jobshop
Branching on the precedences
for the Jobshop
Implement missing filterings:
o Detectable Precedence
o Not-First/Not-Last

Disjunctive |
scheduling

) [Search

Last conflict

Conflict ordering

Limited discrepancy search

Black-Box }

x1

x5 x6
x6 x5 10
x{ }x?
X8, X8,

Table of content

e Bin-Packing
e Symmetry breaking
e Steel Mill Slab Problem

[Modeling }

e Or constraints with watched
Literals

e Reified Or constraint

e Modeling Steel Mill Slab
Problem and apply symmetry
breaking on it

Real world

11

Example with the first module

e 7/ videos
o Between 5 to 15 minutes each
o Sum of duration: ~55 minutes e Applications of CP in
e Focus on N-Queens problem ° Routing
. _ P o scheduling
o Problem introduction e CP as declarative paradigm
o How to discover all solutions? e N-Queens model
o Gradually introduces CP components
e Clarification on declarative programming [Introduction }
e Examples of problems tackled with CP

2] - [| e Model a graph coloring
: = &l . problem

2 4 1
= HINey] X
4 g—é

=

12

&
€

Programming assignment

13

Example with the first module

public static int[] solve(GraphColoringInstance instance) {
TODO: solve the graph coloring problem using TinyCSP and return a solution

in e (on clL re or you can moc g u

throw new NotImplementedException("GraphColoringTinyCSP");

public static int[] solve(GraphColoringInstance instance) {
int n = instance.n;
TinyCSP csp = new TinyCSP();
Variable[] color = new Variable[n];

for (int 1 = 0; 1 < n; i++) Variables

color[i] = csp.makeVariable(instance.maxColor);

for (int [] edge: instance.edges) {
int i = edgel0];

int‘j = edgellj: : _ . Constraints

ot the s or

csp.notEqual(color[i],color[j], offset: 8);

1
ArraylList<int []> solutions = new ArraylList<>();

find the first solution

the First sol

try {
csp.dfs(solution -> {
solutions.add(solution);

stop the search at first L r
throw new RuntimeException("stop"); SearCh
I3H
} catch (RuntimeException stop) {
return solutions.get(0);
+

return null;

Programming assignment

Demo!

15

Programming assignment
() GitHub
e Grade obtained by passing unit tests
e Can berun
o Locally - for self assessment and debugging
o On a grading platform (INGlInious) - validating the student’s score ¥ .
e Creation, update and submission of assignment using git(hub)

Create your repository

Collapse context n

The grading for this course will be partly based on your work on Your answer passed the tests! Your score is 100.0%. [Submission b3

MIICE” #643ee891607332efce35dedc]
You will do most of the work alone on a private repository hosted
on GitHub. Please provide your GitHub username for Its creation.
Test Status Grade Comment
If you do not have a GitHub account yet, you can create one here.
GraphColoringTinyCSPTest Success 1”7
Your answer passed the tests! Your score is 100.0%. - testSolve(String) - [1] gc_15_30_0 Success 0.1/0.1
[Submission #643ee855607332efce35ded7]
~ testSolve(String) - [2] gc_15_30_1 Success 0.1/0.1
Your repository has been created! Click here to accept the
poson. p ~ testSolvelString) - 31 ec 15 30 2 ¥l Success 0.1/0.1 16

invitation or look into your emails for it.

Categories of tests

Smalls tests

o Cover small and understandable examples

o Useful for quick understanding and debugging
Common mistakes tests

o Based on common errors observed in previous years

o Present mistakes in a comprehensible manners
Runtime tests

o Ensure correct usage of tips and datastructures
Search tests

o Check number of solutions / failures
o More robust assessment of validity

a

TSP solver

a

Model

-

U

Circuit constraint

=\

J

p

Element constraint

>

J

p

U

Sum constraint

>

J

p

(U

>

AlIDifferent constraintj

Search

~

(U

Custom search

>

>

17

A weird test?

Assignment 5 asks to implement a Circuit constraint propagator

Algorithm 1 Circuit propagation - beginning of the algorithm

Data: dest, orig: arrays of reversible integers storing the destination and origin of
partial path through each Integer Variable x;, respectively
Input : Integer Variable x; that has become fixed
1§ min(D(x;)) ;

2 destorigli]] < dest[j] ;
8 .

private void fix(int i) {
// TODO

throw new NotImplementedException("Circuit");

18

private void fix(int i) {

A weird test?

private void fix(int i) {X

int 3 = x[1].min(); int j = x[i].min();
int origi = orig[i].value(); int origi = orig[i].value();
int destj = dest[j].value(); dest[origi] = dest[j];

dest[origi].setValue(destj);

Algorithm 1 Circuit propagation - beginning of the algorithm

1
2

Data: dest, orig: arrays of reversible integers storing the destination and origin of
partial path through each Integer Variable x;, respectively

Input : Integer Variable z; that has become fixed

j < min(D(x;)) ;

destlorig[i]] < dest[j] ;

- QT

19

A weird test?

private void fix(int i) { private void fix(int i) {X
int § = x[i].minQ); int j = x[i].min();
int origi = orig[i].value(); int origi = orig[i].value();
int destj = dest[j].value(); dest[origi] = dest[j];

dest[origi].setValue(destj);

is the objects references to be sure that it is not the case
for (int i = @ ; i < x.length; ++i) {

StateInt origI = circuit.orig[il;

o G s SRR ST A test that you would never

it (1= 9 4 D ae find in non-educational

assertNotSame(origI, circuit.origlj],
message: "Use orig[i].setValue(...) to set the StateInt, not orig[i] = ..."); CP SOIver!
}
assertNotSame(origI, circuit.dest[j],
message: "Use orig[i].setValue(...) to set the StateInt, not orig[i] = ...");

} 20

Analytics

21

Analytics

e 515 enrolled students
e 110 attempted exercises

Distribution of the number of commits per students Distribution of the number of modified lines per students

k2]
€ 12 16
£
o
=
249 14
[
Qo
5 12

j2]
) E 10
£ 2
£)
2 £
£ T
2
1]
B 5 4
a I I
£

2
0 10 20 30 40 50 60 70 80 0 NN EEN
Number of commits 0 500 1000 1500 2000 2500 3000

Number of modified lines
- Figure 1 Distribution of the number of commits made by each student during the whole course.
Each bin has a width of size 2 (0-1, 1-2, 3-4, ... are grouped together for readability). Figure 2 Distribution of the number of lines modified by each student during the whole course.
Each bin has a width of size 250.

Number of commits per day per student

. Monday [| I - m - - - 0.30
An a Iytl CS Tuesday . |- - - - - 0.25
% Wednesday i - i HEEN 0.20
% Thursday - - - [| - - 015
= Friday [| [| - - ‘ - - B o
Saturday Iy | - Bl - | oee
Sunday - - - - -

Active students each week

- 0.00
?.E?40 0 1 2 3 4 5 6 7 8 9 10 M1 12 13 14 15
£ Week
Q
o
gﬂ 30 Figure 4 Average number of commits per day per student.
3:; @ Number of active weeks per student
- [
c o
3 2175
2 20 =
2 3
2 ®
3 5 15.0
- 10 3
8 E 125
£ c
z §
= 10.0
(=]
0 o
0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 S
Week £ 75
3
<8
Figure 3 Number of active students per week. Active students are those who made at least one § 5.0
commit during a given week. 2
S 25
:
g 0.0 - --
= 0 2 4 6 8 10 12 14

Number of active weeks

Figure 5 Number of "active weeks" per students. An active week is a week where the student
made at least a commit.

Future of the MOOC

e Create exercise(s) where only a problem statement is given, and the students

need to derive a working model and search for it
o Currently the exercises are all guided
o Evaluation framework can be easily adapted to such cases

e Give visualization tools to the students
e Invite CP expert for students with a stronger appetite for CP
Next MOOC iteration starts on September 18th

24

Conclusion

e The MOOC provides a deep understanding of CP
o Covers all key components of a CP solver
e Automation is the key to monitor and evaluate the students continuously and
easily
e Room for improvement over next iterations
o New exercises / tests
o Visualisation tools
o New experts highlights

[w] -+ [m] ’Mini

L]
d https://edx.org/course/constraint-programming

[=] i

25

https://edx.org/course/constraint-programming

